71 research outputs found
On-target restoration of a split T cell-engaging antibody for precision immunotherapy
T cell-engaging immunotherapies are changing the landscape of current cancer care. However, suitable target antigens are scarce, restricting these strategies to very few tumor types. Here, we report on a T cell-engaging antibody derivative that comes in two complementary halves and addresses antigen combinations instead of single molecules. Each half, now coined hemibody, contains an antigen-specific single-chain variable fragment (scFv) fused to either the variable light (V-L) or variable heavy (V-H) chain domain of an anti-CD3 antibody. When the two hemibodies simultaneously bind their respective antigens on a single cell, they align and reconstitute the original CD3-binding site to engage T cells. Employing preclinical models for aggressive leukemia and breast cancer, we show that by the combinatorial nature of this approach, T lymphocytes exclusively eliminate dual antigen-positive cells while sparing single positive bystanders. This allows for precision targeting of cancers not amenable to current immunotherapies
Identification of Y-Box Binding Protein 1 As a Core Regulator of MEK/ERK Pathway-Dependent Gene Signatures in Colorectal Cancer Cells
Transcriptional signatures are an indispensible source of correlative information on disease-related molecular alterations on a genome-wide level. Numerous candidate genes involved in disease and in factors of predictive, as well as of prognostic, value have been deduced from such molecular portraits, e.g. in cancer. However, mechanistic insights into the regulatory principles governing global transcriptional changes are lagging behind extensive compilations of deregulated genes. To identify regulators of transcriptome alterations, we used an integrated approach combining transcriptional profiling of colorectal cancer cell lines treated with inhibitors targeting the receptor tyrosine kinase (RTK)/RAS/mitogen-activated protein kinase pathway, computational prediction of regulatory elements in promoters of co-regulated genes, chromatin-based and functional cellular assays. We identified commonly co-regulated, proliferation-associated target genes that respond to the MAPK pathway. We recognized E2F and NFY transcription factor binding sites as prevalent motifs in those pathway-responsive genes and confirmed the predicted regulatory role of Y-box binding protein 1 (YBX1) by reporter gene, gel shift, and chromatin immunoprecipitation assays. We also validated the MAPK-dependent gene signature in colorectal cancers and provided evidence for the association of YBX1 with poor prognosis in colorectal cancer patients. This suggests that MEK/ERK-dependent, YBX1-regulated target genes are involved in executing malignant properties
Efficient Transient Transfection of Human Multiple Myeloma Cells by Electroporation - An Appraisal
Cell lines represent the everyday workhorses for in vitro research on multiple myeloma (MM) and are regularly employed in all aspects of molecular and pharmacological investigations. Although loss-of-function studies using RNA interference in MM cell lines depend on successful knockdown, no well-established and widely applied protocol for efficient transient transfection has so far emerged. Here, we provide an appraisal of electroporation as a means to introduce either short-hairpin RNA expression vectors or synthesised siRNAs into MM cells. We found that electroporation using siRNAs was much more efficient than previously anticipated on the basis of transfection efficiencies deduced from EGFP-expression off protein expression vectors. Such knowledge can even confidently be exploited in "hard-to-transfect" MM cell lines to generate large numbers of transient knockdown phenotype MM cells. In addition, special attention was given to developing a protocol that provides easy implementation, good reproducibility and manageable experimental costs
Electroporation of INA-6 cells stably expressing enhanced green fluorescent protein with an siRNA oligonucleotide against EGFP.
<p>INA-6-EGFP cells were electroporated with a solution containing a stealth siRNA targeting EGFP as well as an expression plasmid for CD4Δ. One day post-electroporation one half of the cell culture was purified according to the column procedure (red curves, also see Fig. 1b)–e)), whereas the other half only underwent debris removal with OptiPrep (blue curves, also see Fig. 1f)). Purified cells were further cultured and FACS-analysed for EGFP expression at the times indicated. Only the live cell fraction (as demarcated in the forward/sideward scatter) was analysed and plotted against similarly treated INA-6-EGFP cells (green curves) transfected with a non-EGFP targeting siRNA. Knockdown efficiency was essentially identical in strength and over time between both purification approaches. One representative experiment from a total of three is shown.</p
Electroporation and knockdown efficiencies in “easy-to-transfect” vs. “hard-to-transfect” MM cell lines.
<p>Left-hand panel: MM cell lines were electroporated with an expression vector for EGFP (pEGFP-N3; 10 µg/ml) and stealth siRNAs against either ERK2 (stERK2; 3 µM) or against no specific target (control; 3 µM). The FACS-measurements represent the cell cultures at day 1 post-electroporation after debris removal with OptiPrep. Right-hand panel: Knockdown of ERK2 and intrinsic levels of phospho-ERK2 (cells from the cultures represented on the left were harvested at day 3 post-electroporation for Western blotting). Good knockdown of ERK2 and lowered levels of phospho-ERK2 were found for all four MM cell lines tested. Shown is a representative experiment of two complete sets (Western blotting included). Anti-ERK1/2 antibody: Santa Cruz Biotechnology.</p
Voltage dependence of electroporation and knockdown efficiency in AMO-1 cells.
<p>Transfection of AMO-1 cells across a range of voltages using an expression vector for EGFP (pEGFP-N3) and a stealth siRNA against ERK2 (stERK2) in the electroporation mixture. Top panel: increases of the fractions of EGFP-expressing as well as of dead cells with higher voltages (top row). Cells taken in culture after OptiPrep-mediated debris removal reflect only the increase in transfection efficiency for the EGFP expression plasmid (bottom row). Middle panel: purified AMO-1 cells (those shown in the upper panel, bottom row) after culture for another 4 days. Top row: EGFP expression. Bottom row: annexin V-PromoFluor 647/PI staining. Even for the highest voltage used (320 V) the purified live cell fraction did not fare worse in subsequent culture than cells electroporated under milder conditions. Bottom panel: Western analysis of ERK2 knockdown at days 3 and 5 post-electroporation from the same cultures from which the FACS panels were derived. Efficient siRNA-mediated ERK2 knockdown was achieved at voltages significantly lower than required for the best levels of plasmid electroporation. However, a lower limit for successful knockdown was reached between the settings for 160 and 200 V. Shown is a representative experiment of two complete sets (Western blotting included). Anti-ERK1/2 antibody: CST.</p
Knockdown efficiency in MM cells.
<p>Knockdown of ERK2 in different MM cell lines after transfection with either a short-hairpin expression vector (pSU-ERK2) or the “corresponding” target sequence synthesised as 25 bp stealth siRNA (stERK2; see Methods and <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0097443#pone.0097443-Chatterjee1" target="_blank">[21]</a>). At day 1 post-electroporation half of the transfected culture was subjected to the column purification method (also see Fig. 1b)–e)) (resp. cell sorting for AMO-1 cells) and the other half to debris removal only (also see Fig. 1f)). Cells were harvested for Western blotting at the times indicated. Empty pSUPER vector (pSU) transfected cells served as controls. The blots show that the ERK2 knockdown efficiency for stealth siRNA is virtually identical between cells that only underwent debris removal and those that were subjected to the column purification procedure. ERK2 knockdown using the short-hairpin expression vector was less efficient in debris-removal-only samples compared with their cognate column purification complements (see JJN-3, L-363). Representative experiments (JJN-3: n = 3; L-363: n = 2, AMO-1: n = 2) are shown. Anti-ERK1/2 antibody: CST.</p
Electroporation of AMO-1 cells with a 6-FAM-labelled siRNA oligonucleotide.
<p>Left column: Fluorescence of AMO-1 cells electroporated with the siERK2-6-FAM oligonucleotide (green curve) in relation to mock transfected cells (blue curve) at different time points post-electroporation. Right: Western analysis for ERK2 knockdown at days 3, 5, 7 post-electroporation. One representative experiment from a total of three is shown. Anti-ERK1/2 antibody: CST.</p
Electroporation of MM cell lines and subsequent purification of transfected cells.
<p>Shown is a representative example of the procedure using the well-transfectable MM cell line JJN-3. This standard column purification has now been performed hundreds of times in our laboratory and is also easily applicable for MM cell lines INA-6, KMS-11, L-363, MM.1S and U-266 (<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0097443#pone-0097443-t001" target="_blank">Table 1</a>). a) Cell culture one day after electroporation with expression plasmids for enhanced green fluorescent protein (EGFP) and CD4Δ, showing about a quarter of cells strongly positive for EGFP. b)-e) Enrichment of strongly transfected cells by selection for CD4 surface expression (CD4 MicroBead column selection). b) Column runthrough of cell culture shown in a). Of note is the similar look with a), but with depletion of the strongest transfected cells in b). c) Column eluate of the cell culture shown in a). Untransfected cells (EGFP- and CD4Δ-negative) have effectively been removed, but the column procedure tends to retain significant amounts of dead cells (EGFP-negative, PI-positive). d) Floating fraction of the column eluate as shown in c) after “density gradient” (more properly: density step) treatment using OptiPrep, consisting mostly of viable and strongly transfected cells. e) Pelleted fraction of the column eluate as shown in c) after “density gradient” treatment using OptiPrep, consisting mostly of debris. f) Removal of debris by OptiPrep treatment from the cell culture as shown in a) without prior column separation, leaving two main fractions which are either EGFP-negative, or distinctly EGFP-positive. See Methods section for further details.</p
Loss of serum and glucocorticoid-regulated kinase 3 (SGK3) does not affect proliferation and survival of multiple myeloma cell lines.
Multiple myeloma (MM) is a generally fatal plasma cell cancer that often shows activation of the phosphoinositide 3-kinase/Akt (PI3K/Akt) pathway. Targeted pharmacologic therapies, however, have not yet progressed beyond the clinical trial stage, and given the complexity of the PI3K/Akt signalling system (e.g. multiple protein isoforms, diverse feedback regulation mechanisms, strong variability between patients) it is mandatory to characterise its ramifications in order to better guide informed decisions about the best therapeutic approaches. Here we explore whether serum and glucocorticoid-regulated kinase 3 (SGK3), a potential downstream effector of PI3K, plays a role in oncogenic signalling in MM cells--either in concert with or independent of Akt. SGK3 was expressed in all MM cell lines and in all primary MM samples tested. Four MM cell lines representing a broad range of intrinsic Akt activation (very strong: MM.1s, moderate: L 363 and JJN-3, absent: AMO-1) were chosen to test the effects of transient SGK3 knockdown alone and in combination with pharmacological inhibition of Akt, PI3K-p110α, or in the context of serum starvation. Although the electroporation protocol led to strong SGK3 depletion for at least 5 days its absence had no substantial effect on the activation status of potential downstream substrates, or on the survival, viability or proliferation of MM cells in all experimental contexts tested. We conclude that it is unlikely that SGK3 plays a significant role for oncogenic signalling in multiple myeloma
- …