7 research outputs found

    Effect of Strain Magnitude on the Tissue Properties of Engineered Cardiovascular Constructs

    Get PDF
    Mechanical loading is a powerful regulator of tissue properties in engineered cardiovascular tissues. To ultimately regulate the biochemical processes, it is essential to quantify the effect of mechanical loading on the properties of engineered cardiovascular constructs. In this study the Flexercell FX-4000T (Flexcell Int. Corp., USA) straining system was modified to simultaneously apply various strain magnitudes to individual samples during one experiment. In addition, porous polyglycolic acid (PGA) scaffolds, coated with poly-4-hydroxybutyrate (P4HB), were partially embedded in a silicone layer to allow long-term uniaxial cyclic mechanical straining of cardiovascular engineered constructs. The constructs were subjected to two different strain magnitudes and showed differences in biochemical properties, mechanical properties and organization of the microstructure compared to the unstrained constructs. The results suggest that when the tissues are exposed to prolonged mechanical stimulation, the production of collagen with a higher fraction of crosslinks is induced. However, straining with a large strain magnitude resulted in a negative effect on the mechanical properties of the tissue. In addition, dynamic straining induced a different alignment of cells and collagen in the superficial layers compared to the deeper layers of the construct. The presented model system can be used to systematically optimize culture protocols for engineered cardiovascular tissues

    Quantification of the Temporal Evolution of Collagen Orientation in Mechanically Conditioned Engineered Cardiovascular Tissues

    Get PDF
    Load-bearing soft tissues predominantly consist of collagen and exhibit anisotropic, non-linear visco-elastic behavior, coupled to the organization of the collagen fibers. Mimicking native mechanical behavior forms a major goal in cardiovascular tissue engineering. Engineered tissues often lack properly organized collagen and consequently do not meet in vivo mechanical demands. To improve collagen architecture and mechanical properties, mechanical stimulation of the tissue during in vitro tissue growth is crucial. This study describes the evolution of collagen fiber orientation with culture time in engineered tissue constructs in response to mechanical loading. To achieve this, a novel technique for the quantification of collagen fiber orientation is used, based on 3D vital imaging using multiphoton microscopy combined with image analysis. The engineered tissue constructs consisted of cell-seeded biodegradable rectangular scaffolds, which were either constrained or intermittently strained in longitudinal direction. Collagen fiber orientation analyses revealed that mechanical loading induced collagen alignment. The alignment shifted from oblique at the surface of the construct towards parallel to the straining direction in deeper tissue layers. Most importantly, intermittent straining improved and accelerated the alignment of the collagen fibers, as compared to constraining the constructs. Both the method and the results are relevant to create and monitor load-bearing tissues with an organized anisotropic collagen network

    Intermittent straining accelerates the development of tissue properties in engineered heart valve tissue

    No full text
    Tissue-engineered heart valves lack sufficient amounts of functionally organized structures and consequently do not meet in vivo mechanical demands. To optimize tissue architecture and hence improve mechanical properties, various in vitro mechanical conditioning protocols have been proposed, of which intermittent straining is most promising in terms of tissue properties. We hypothesize that this is due to an improved collagen matrix synthesis, maturation, and organization, triggered by periodic straining of cells. To test this hypothesis, we studied the effect of intermittent versus constrained conditioning with time (2–4 weeks), using a novel model system of human heart valve tissue. Temporal variations in collagen production, cross-link density, and mechanical properties were quantified in engineered heart valve tissue, cyclically strained for 3-h periods, alternated with 3-h periods rest. In addition, an innovative method for vital collagen imaging was used to monitor collagen organization. Intermittent straining resulted in increased collagen production, cross-link densities, collagen organization, and mechanical properties at faster rates, as compared to constrained controls, leading to stronger tissues in shorter culture periods. This is of utmost importance for heart valve tissue engineering, where insufficient mechanical properties are currently the main limiting factor

    Validation of the acoustic change complex (ACC) prediction model to predict speech perception in noise in adult patients with hearing loss : a study protocol

    No full text
    Abstract: Background Speech perception tests are essential to measure the functional use of hearing and to determine the effectiveness of hearing aids and implantable auditory devices. However, these language-based tests require active participation and are influenced by linguistic and neurocognitive skills limiting their use in patients with insufficient language proficiency, cognitive impairment, or in children. We recently developed a non-attentive and objective speech perception prediction model: the Acoustic Change Complex (ACC) prediction model. The ACC prediction model uses electroencephalography to measure alterations in cortical auditory activity caused by frequency changes. The aim is to validate this model in a large-scale external validation study in adult patients with varying degrees of sensorineural hearing loss (SNHL) to confirm the high predictive value of the ACC model and to assess its test\u2013retest reliability. Methods A total of 80 participants, aged 18\u201365 years, will be enrolled in the study. The categories of severity of hearing loss will be used as a blocking factor to establish an equal distribution of patients with various degrees of sensorineural hearing loss. During the first visit, pure tone audiometry, speech in noise tests, a phoneme discrimination test, and the first ACC measurement will be performed. During the second visit (after 1\u20134 weeks), the same ACC measurement will be performed to assess the test\u2013retest reliability. The acoustic change stimuli for ACC measurements consist of a reference tone with a base frequency of 1000, 2000, or 4000 Hz with a duration of 3000 ms, gliding to a 300-ms target tone with a frequency that is 12% higher than the base frequency. The primary outcome measures are (1) the level of agreement between the predicted speech reception threshold (SRT) and the behavioral SRT, and (2) the level of agreement between the SRT calculated by the first ACC measurement and the SRT of the second ACC measurement. Level of agreement will be assessed with Bland\u2013Altman plots. Discussion Previous studies by our group have shown the high predictive value of the ACC model. The successful validation of this model as an effective and reliable biomarker of speech perception will directly benefit the general population, as it will increase the accuracy of hearing evaluations and improve access to adequate hearing rehabilitation

    Validation of the acoustic change complex (ACC) prediction model to predict speech perception in noise in adult patients with hearing loss: a study protocol

    No full text
    Abstract Background Speech perception tests are essential to measure the functional use of hearing and to determine the effectiveness of hearing aids and implantable auditory devices. However, these language-based tests require active participation and are influenced by linguistic and neurocognitive skills limiting their use in patients with insufficient language proficiency, cognitive impairment, or in children. We recently developed a non-attentive and objective speech perception prediction model: the Acoustic Change Complex (ACC) prediction model. The ACC prediction model uses electroencephalography to measure alterations in cortical auditory activity caused by frequency changes. The aim is to validate this model in a large-scale external validation study in adult patients with varying degrees of sensorineural hearing loss (SNHL) to confirm the high predictive value of the ACC model and to assess its test–retest reliability. Methods A total of 80 participants, aged 18–65 years, will be enrolled in the study. The categories of severity of hearing loss will be used as a blocking factor to establish an equal distribution of patients with various degrees of sensorineural hearing loss. During the first visit, pure tone audiometry, speech in noise tests, a phoneme discrimination test, and the first ACC measurement will be performed. During the second visit (after 1–4 weeks), the same ACC measurement will be performed to assess the test–retest reliability. The acoustic change stimuli for ACC measurements consist of a reference tone with a base frequency of 1000, 2000, or 4000 Hz with a duration of 3000 ms, gliding to a 300-ms target tone with a frequency that is 12% higher than the base frequency. The primary outcome measures are (1) the level of agreement between the predicted speech reception threshold (SRT) and the behavioral SRT, and (2) the level of agreement between the SRT calculated by the first ACC measurement and the SRT of the second ACC measurement. Level of agreement will be assessed with Bland–Altman plots. Discussion Previous studies by our group have shown the high predictive value of the ACC model. The successful validation of this model as an effective and reliable biomarker of speech perception will directly benefit the general population, as it will increase the accuracy of hearing evaluations and improve access to adequate hearing rehabilitation
    corecore