115 research outputs found

    The role of FMT and FIS1A in mitochondrial morphology and salt stress in Arabidopsis thaliana

    Get PDF
    Salt stress is known to have severe effects on plant health and fecundity, and mitochondria are known to be an essential part of the plant salt stress response. Arabidopsis thaliana serves as an excellent model to study the effects of salt stress as well as mitochondrial morphology. Arabidopsis contains several homologues to known mitochondrial proteins, including the fission protein FIS1A, and FMT, a homologue of the CLU subfamily. We sought to examine the effects of salt stress on knockout lines of FIS1A and FMT, as well as a transgenic line overexpressing FMT (FMT-OE) in columella cells in the root cap of Arabidopsis. fmt mutants displayed defects in both root and leaf growth, as well as a delay in flowering time. These mutants also showed a pronounced increase in mitochondrial clustering and number. FMT-OE mutants displayed severe defects in germination, including a decrease in total germination, and an increase in the number of days to germination. fis1A mutants exhibited shorter roots and slightly shorter leaves, as well as a tendency towards random mitochondrial clustering in root cells. Salt stress was shown to affect various mitochondrial parameters, including an increase in mitochondrial number and clustering, as well as a decrease in mitochondrial area. These results reveal a previously unknown role for FMT in germination and flowering in Arabidopsis, as well as insight into the effects of salt stress on mitochondrial morphology. FMT, along with FIS1A, may also help to regulate mitochondrial number and clustering, as well as root and leaf growth, under both control and salt-stressed conditions. This has implications for both FMT and FIS1A in whole-plant morphology as well as the plant salt stress response

    The Interaction of Early Salt Stress-Induced 2 (ESI2) and the Ran G Protein in Arabidopsis

    Get PDF
    The Early Salt Stress-Induced 2 protein, ESI2, was identified as an interacting protein with the GTP-binding protein RAN via a His6-tag pull-down assay and by bimolecular fluorescent complementation. Fluorescent protein fusions transiently expressed in Nicotiana benthamiana were observed using confocal fluorescent microscopy. The proteins fused to independent fluorescent partners localized to separate cellular compartments, with RAN primarily localized to the nucleus and ESI2 localized primarily to the tonoplast and cytoplasm. This interaction suggests a potential mechanism for the role of ESI2 in the sequestration of RAN and possible regulation of cell division in response to stress. To further explore the role of ESI2, the protein was overexpressed in Arabidopsis however plant phenotypes were not found to differ from wild type plants

    Multiplex real-time quantitative PCR, microscopy and rapid diagnostic immuno-chromatographic tests for the detection of Plasmodium spp: performance, limit of detection analysis and quality assurance

    Get PDF
    Abstract Background Accurate laboratory diagnosis of malaria species in returning travelers is paramount in the treatment of this potentially fatal infectious disease. Materials and methods A total of 466 blood specimens from returning travelers to Africa, Asia, and South/Central America with suspected malaria infection were collected between 2007 and 2009 at the reference public health laboratory. These specimens were assessed by reference microscopy, multipex real-time quantitative polymerase chain reaction (QPCR), and two rapid diagnostic immuno-chromatographic tests (ICT) in a blinded manner. Key clinical laboratory parameters such as limit of detection (LOD) analysis on clinical specimens by parasite stage, inter-reader variability of ICTs, staffing implications, quality assurance and cost analysis were evaluated. Results QPCR is the most analytically sensitive method (sensitivity 99.41%), followed by CARESTART (sensitivity 88.24%), and BINAXNOW (sensitivity 86.47%) for the diagnosis of malaria in returning travelers when compared to reference microscopy. However, microscopy was unable to specifically identify Plasmodia spp. in 18 out of 170 positive samples by QPCR. Moreover, the 17 samples that were negative by microscopy and positive by QPCR were also positive by ICTs. Quality assurance was achieved for QPCR by exchanging a blinded proficiency panel with another reference laboratory. The Kappa value of inter-reader variability among three readers for BINAXNOW and CARESTART was calculated to be 0.872 and 0.898 respectively. Serial dilution studies demonstrated that the QPCR cycle threshold correlates linearly with parasitemia (R2 = 0.9746) in a clinically relevant dynamic range and retains a LOD of 11 rDNA copies/μl for P. falciparum, which was several log lower than reference microscopy and ICTs. LOD for QPCR is affected not only by parasitemia but the parasite stage distribution of each clinical specimen. QPCR was approximately 6-fold more costly than reference microscopy. Discussion These data suggest that multiplex QPCR although more costly confers a significant diagnostic advantage in terms of LOD compared to reference microscopy and ICTs for all four species. Quality assurance of QPCR is essential to the maintenance of proficiency in the clinical laboratory. ICTs showed good concordance between readers however lacked sensitivity for non-falciparum species due to antigenic differences and low parasitemia. Conclusion Multiplex QPCR but not ICTs is an essential adjunct to microscopy in the reference laboratory detection of malaria species specifically due to the superior LOD. ICTs are better suited to the non-reference laboratory where lower specimen volumes challenge microscopy proficiency in the non-endemic setting

    Heterotrimeric Gα subunit from wheat (Triticum aestivum), GA3, interacts with the calcium-binding protein, Clo3, and the phosphoinositide-specific phospholipase C, PI-PLC1

    Get PDF
    The canonical Gα subunit of the heterotrimeric G protein complex from wheat (Triticum aestivum), GA3, and the calcium-binding protein, Clo3, were revealed to interact both in vivo and in vitro and Clo3 was shown to enhance the GTPase activity of GA3. Clo3 is a member of the caleosin gene family in wheat with a single EF-hand domain and is induced during cold acclimation. Bimolecular Fluorescent Complementation (BiFC) was used to localize the interaction between Clo3 and GA3 to the plasma membrane (PM). Even though heterotrimeric G-protein signaling and Ca2+ signaling have both been shown to play a role in the response to environmental stresses in plants, little is known about the interaction between calcium-binding proteins and Gα. The GAP activity of Clo3 towards GA3 suggests it may play a role in the inactivation of GA3 as part of the stress response in plants. GA3 was also shown to interact with the phosphoinositide-specific phospholipase C, PI-PLC1, not only in the PM but also in the endoplasmic reticulum (ER). Surprisingly, Clo3 was also shown to interact with PI-PLC1 in the PM and ER. In vitro analysis of the protein–protein interaction showed that the interaction of Clo3 with GA3 and PI-PLC1 is enhanced by high Ca2+ levels. Three-way affinity characterizations with GA3, Clo3 and PI-PLC1 showed the interaction with Clo3 to be competitive, which suggests that Clo3 may play a role in the Ca2+-triggered feedback regulation of both GA3 and PI-PLC1. This hypothesis was further supported by the demonstration that Clo3 has GAP activity with GA3

    North American art and modern forms of investment

    No full text
    The relationship between art and commerce has a very long history dating back to ancient Rome. Traditionally, art was enjoyed not only for financial gains but for decorative purposes, as a sign of social prestige or religious morality and most for aesthetic pleasure. However, in recent decades, the emergence of art solely as a speculative asset has not only raised questions but also fears about the negative impact it will have on artwork. Some believe that art has become as immaterial as stocks traded on the stock market with their aesthetic value rendered meaningless. The purpose of this study is to examine the development of two new types of art investment strategies which have modified the role of art as a commodity: art in investment portfolios and art-investment funds. More precisely, this study will situate these developments in a North American context, focusing on how American and Canadian art might function in an investment portfolio and an art-investment fund. While American and Canadian art is not used as a tool for diversification in a traditional investment portfolio, American art-investment funds are prevalent but as yet for the most part unsuccessful. Therefore, since art's development as a strong alternative asset class is still in its early stages, it is somewhat early to predict the full impact these modern types of investments will have on the North American art world
    corecore