2 research outputs found

    EUV spectra of highly-charged ions W54+^{54+}-W63+^{63+} relevant to ITER diagnostics

    Full text link
    We report the first measurements and detailed analysis of extreme ultraviolet (EUV) spectra (4 nm to 20 nm) of highly-charged tungsten ions W54+^{54+} to W63+^{63+} obtained with an electron beam ion trap (EBIT). Collisional-radiative modelling is used to identify strong electric-dipole and magnetic-dipole transitions in all ionization stages. These lines can be used for impurity transport studies and temperature diagnostics in fusion reactors, such as ITER. Identifications of prominent lines from several W ions were confirmed by measurement of isoelectronic EUV spectra of Hf, Ta, and Au. We also discuss the importance of charge exchange recombination for correct description of ionization balance in the EBIT plasma.Comment: 11 pages, 4 figure

    State-resolved valence shell photoionization of Be-like ions: experiment and theory

    Full text link
    High-resolution photoionization experiments were carried out using beams of Be-like C2+^{2+}, N3+^{3+}, and O4+^{4+} ions with roughly equal populations of the 1^1S ground-state and the 3^3Po^o manifold of metastable components. The energy scales of the experiments are calibrated with uncertainties of 1 to 10 meV depending on photon energy. Resolving powers beyond 20,000 were reached allowing for the separation of contributions from the individual metastable 3^3P0o^o_0, 3^3P1o^o_1, and 3^3P2o^o_2 states. The measured data compare favourably with semi-relativistic Breit-Pauli R-matrixComment: 23 figures and 3 table
    corecore