19 research outputs found
Polishing of Black and White CVD Grown Polycrystalline Diamond Coatings
Microwave plasma CVD growth can produce black and white varieties of polycrystalline diamond (PCD), depending on their as-grown purity. These two types of PCDs have been polished by mechanical and chemo-mechanical polishing respectively. It has been observed that initial roughness of 2.21μm for white PCD can be brought down to 175 nm after 70 hours of combined polishing, whereas, 85 hours of combined polishing could bring down the high initial roughness of 11.2μm for black PCD down to 546 nm at the end. Although, the material that was removed during polishing was higher for the black variety of PCD but it had lower polishing rate of 4nm/hr than white PCD (13nm/hr) during chemo-mechanical polishing. Such differential polishing rate was due to harder top polished surface of the black diamond than the white diamond. The nanoindentation study on the polished PCD surfaces revealed that the black PCD has a final nanohardness of 32.58±1 GPa whereas the white variety PCD had a polished surface nanohardness of 28.5±2 GPa. More conversion of diamond surface into harder amorphous sp3 than softer graphite during polishing action may have resulted such slow rate of anisotropic polishing for black diamond than white diamond
Optically Transparent Flexible Broadband Metamaterial Absorber Based on Topology Optimization Design
A conformal metamaterial absorber with simultaneous optical transparency and broadband absorption is proposed in this paper. The absorptance above 90% over a wide frequency range of 5.3–15 GHz can be achieved through topology optimization combined with a genetic algorithm (GA). The broadband absorption can be kept at incident angles within 45° and 70° for TE mode and TM mode, respectively. In the meantime, by employing transparent substrates, including polyvinyl chloride (PVC) and polyethylene terephthalate (PET), good optical transmittance and flexibility can be obtained simultaneously. The experimental results agree well with the numerical simulations, which further validates the reliability of our design and theoretical analysis. With its visible-wavelength transparency, flexibility, broadband absorption, low profile, excellent angle stability and polarization insensitivity, the proposed absorber is highly favored for practical applications in microwave engineering, such as electromagnetic interference and stealth technology. Moreover, the proposed design method of topology optimization can be extended to design the absorber quickly and efficiently, according to specific engineering requirements
Three-dimensional Graphite electrodes in CVD Diamond: charge collection dependence on impinging b-particles geometry
The charge collection performance of a three-dimensional diamond-graphite detector is reported. Buried
graphite pillars with high aspect ratio were formed inside a single crystal synthetic diamond slab by
using a femtosecond IR laser with 200 kHz of repetition rate. Grouped in two series and connected by
graphite strips on the surface, eight independent 3D electrodes were used to collect the charge carriers
generated by energy deposited in the detector by
90
Sr,Y β-particles. Different impinging configurations
were used to test charge collection and signal dependence on voltage. Reversing the bias polarity the
pulse height distribution does not changes and the charge collection saturation of any group of
connected pillars was observed around 780 V (0.53 V/μm). The average charge collected by one pillars
row is Q av ¼1.6070.02 fC, with electrons impinging orthogonally the rows, in such a way demonstrating
full charge collection
Isotope Effect in Thermal Conductivity of Polycrystalline CVD-Diamond: Experiment and Theory
We measured the thermal conductivity κ(T) of polycrystalline diamond with natural (natC) and isotopically enriched (12C content up to 99.96 at.%) compositions over a broad temperature T range, from 5 to 410 K. The high quality polycrystalline diamond wafers were produced by microwave plasma chemical vapor deposition in CH4-H2 mixtures. The thermal conductivity of 12C diamond along the wafer, as precisely determined using a steady-state longitudinal heat flow method, exceeds much that of the natC sample at T>60 K. The enriched sample demonstrates the value of κ(298K)=25.1±0.5 W cm−1 K−1 that is higher than the ever reported conductivity of natural and synthetic single crystalline diamonds with natural isotopic composition. A phenomenological theoretical model based on the full version of Callaway theory of thermal conductivity is developed which provides a good approximation of the experimental data. The role of different resistive scattering processes, including due to minor isotope 13C atoms, defects, and grain boundaries, is estimated from the data analysis. The model predicts about a 37% increase of thermal conductivity for impurity and dislocation free polycrystalline chemical vapor deposition (CVD)-diamond with the 12C-enriched isotopic composition at room temperature