19 research outputs found

    Suppression of stimulated Brillouin scattering in optical fibers using a linearly chirped diode laser

    Get PDF
    The output of high power fiber amplifiers is typically limited by stimulated Brillouin scattering (SBS). An analysis of SBS with a chirped pump laser indicates that a chirp of 2.5 × 10^(15) Hz/s could raise, by an order of magnitude, the SBS threshold of a 20-m fiber. A diode laser with a constant output power and a linear chirp of 5 × 10^(15) Hz/s has been previously demonstrated. In a low-power proof-of-concept experiment, the threshold for SBS in a 6-km fiber is increased by a factor of 100 with a chirp of 5 × 10^(14) Hz/s. A linear chirp will enable straightforward coherent combination of multiple fiber amplifiers, with electronic compensation of path length differences on the order of 0.2 m

    Research on nonlinear optical materials: an assessment. IV. Photorefractive and liquid crystal materials

    Get PDF
    This panel considered two separate subject areas: photorefractive materials used for nonlinear optics and liquid crystal materials used in light valves. Two related subjects were not considered due to lack of expertise on the panel: photorefractive materials used in light valves and liquid crystal materials used in nonlinear optics. Although the inclusion of a discussion of light valves by a panel on nonlinear optical materials at first seems odd, it is logical because light valves and photorefractive materials perform common functions
    corecore