127 research outputs found

    Advancements and challenges in plasmon-exciton quantum emitters based on colloidal quantum dots

    Full text link
    The Nobel Prizes in Physics (2022) and Chemistry (2023) heralded the recognition of quantum information science and the synthesis of quantum dots, respectively. This acknowledgment has propelled colloidal quantum dots and perovskite nanocrystals to the forefront of quantum technologies. Their distinct emission properties, facilitating the efficient generation of both single photons and photon pairs, render them particularly captivating. Moreover, their adaptability to diverse structures, ranging from traditional electronics to nanopatterned frameworks, underscores their pivotal role in shaping quantum technologies. Despite notable strides in synthesis, certain properties require refinement for enhanced applicability in quantum information, encompassing emission brightness, stability, single photon indistinguishability, and entanglement fidelity of photon pairs. Here we offer an overview of recent achievements in plasmon-exciton quantum emitters based on luminescent semiconductor nanocrystals. Emphasizing the utilization of the light-matter coupling phenomenon, we explore how this interaction enables the manipulation of quantum properties without altering the chemical structure of the emitters. This approach addresses critical aspects for quantum information applications, offering precise control over emission rate, intensity, and energy. The development of these hybrid systems represents a significant stride forward, demonstrating their potential to overcome existing challenges and advance the integration of quantum emitters into cutting-edge quantum technology applications

    Semiconductor nanowires self-assembled from colloidal CdTe nanocrystal building blocks: optical properties and application perspectives

    Get PDF
    Solution-based self-assembly of quasi-one-dimensional semiconductor nanostructures (nanowires) from quasi-zero-dimensional (quantum dots) colloidal nanocrystal building blocks has proven itself as a powerful and flexible preparation technique. Polycrystalline CdTe nanowires self-assembled from light-emitting thiol-capped CdTe nanocrystals are the focus of this Feature Article. These nanowires represent an interesting model system for quantum dot solids, where electronic coupling between the individual nanocrystals can be optically accessed and controlled. We provide a literature-based summary of the formation mechanism and the morphology-related aspects of self-assembled CdTe nanowires, and highlight several fundamental and application-related optical properties of these nanostructures. These include fundamental aspects of polarization anisotropies in photoluminescence excitation and emission, the electronic coupling between individual semiconductor nanocrystals constituting the nanowires, and more applied, waveguiding properties of CdTe nanowire bundles and anti-Stokes photoluminescence in a prototypical structure of co-axial nanowires. The optical properties of self-assembled CdTe nanowires considered here render them potential candidates for photonic nanoscale devices

    Strong exciton-photon coupling with colloidal quantum dots in a tuneable microcavity

    Full text link
    Polariton emission from optical cavities integrated with various luminophores has been extensively studied recently due to the wide variety of possible applications in photonics, particularly promising in terms of fabrication of low-threshold sources of coherent emission. Tuneable microcavities allow extensive investigation of the photophysical properties of matter placed inside the cavity by deterministically changing the coupling strength and controllable switching from weak to strong and ultra-strong coupling regimes. Here we demonstrate room temperature strong coupling of exciton transitions in CdSe/ZnS/CdS/ZnS colloidal quantum dots with the optical modes of a tuneable low-mode-volume microcavity. Strong coupling is evidenced by a large Rabi splitting of the photoluminescence spectra depending on the detuning of the microcavity. A coupling strength of 154 meV has been achieved. High quantum yields, excellent photostability, and scalability of fabrication of QDs paves the way to practical applications of coupled systems based on colloidal QDs in photonics, optoelectronics, and sensing.Comment: 14 pages, 3 figure

    Colloidal synthesis and optical properties of type-II CdSe-CdTe and inverted CdTe-CdSe core-wing heteronanoplatelets

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.We developed colloidal synthesis to investigate the structural and electronic properties of CdSe-CdTe and inverted CdTe-CdSe heteronanoplatelets and experimentally demonstrate that the overgrowth of cadmium selenide or cadmium telluride core nanoplatelets with counterpartner chalcogenide wings leads to type-II heteronanoplatelets with emission energies defined by the bandgaps of the CdSe and CdTe platelets and the characteristic band offsets. The observed conduction and valence band offsets of 0.36 eV and 0.56 eV are in line with theoretical predictions. The presented type-II heteronanoplatelets exhibit efficient spatially indirect radiative exciton recombination with a quantum yield as high as 23%. While the exciton lifetime is strongly prolonged in the investigated type-II 2D systems with respect to 2D type-I systems, the occurring 2D giant oscillator strength (GOST) effect still leads to a fast and efficient exciton recombination. This makes type-II heteronanoplatelets interesting candidates for low threshold lasing applications and photovoltaics

    On-demand reversible switching of the emission mode of individual semiconductor quantum emitters using plasmonic metasurfaces

    Full text link
    The field of quantum technology has been rapidly expanding in the past decades, yielding numerous applications as quantum information, quantum communication and quantum cybersecurity. The central building block for these applications is a quantum emitter (QE), a controllable source of single photons or photon pairs. Semiconductor QEs such as perovskite nanocrystals (PNCs) and semiconductor quantum dots (QDs) have been demonstrated to be a promising material for pure single-photon emission, and their hybrids with plasmonic nanocavities may serve as sources of photon pairs. Here we have designed a system in which individual quantum emitters and their ensembles can be traced before, during, and after the interaction with the external plasmonic metasurface in controllable way. Upon coupling the external plasmonic metasurface to the array of QEs, the individual QEs switch from single-photon to photon-pair emission mode. Remarkably, this method does not affect the chemical structure and composition of the QEs, allowing them to return to their initial state after decoupling from the plasmonic metasurface. By employing this approach, we have successfully demonstrated the reversible switching of the ensemble of individual semiconductor QEs between single-photon and photon pair emission modes. This significantly broadens the potential applications of semiconductor QEs in quantum technologies

    Whispering gallery modes in photoluminescence and Raman spectra of a spherical microcavity with CdTe quantum dots: anti-Stokes emission and interference effects

    Get PDF
    We have studied the photoluminescence and Raman spectra of a system consisting of a polystyrene latex microsphere coated by CdTe colloidal quantum dots. The cavity-induced enhancement of the Raman scattering allows the observation of Raman spectra from only a monolayer of CdTe quantum dots. Periodic structure with very narrow peaks in the photoluminescence spectra of a single microsphere was detected both in the Stokes and anti-Stokes spectral regions, arising from the coupling between the emission of quantum dots and spherical cavity modes

    Tunable plasmon modes in single silver nanowire optical antennas characterized by far-field microscope polarization spectroscopy

    Get PDF
    Performing far-field microscope polarization spectroscopy and finite element method simulations, we investigated experimentally and theoretically the surface plasmon modes in single Ag nanowire antennas. Our results show that the surface plasmon resonances in the single Ag nanowire antenna can be tuned from the dipole plasmon mode to a higher order plasmon mode, which would result in the emission with different intensities and polarization states, for the semiconductor quantum dots coupled to the nanowire antenna. The fluorescence polarization is changed with different polarized excitation of the 800 nm light beam, while it remains parallel to the Ag nanowire axis at the 400 nm excitation. The 800 nm incident tight interacts nonresonantly with the dipole plasmon mode with the polarized excitation parallel to the Ag nanowire axis, while it excites a higher order plasmon mode with the perpendicular excitation. Under excitation of 400 nm, either the parallel or perpendicular excitation can only result in a dipole plasmon mode. In addition, we demonstrate that the single Ag nanowire antenna can work as an energy concentrator for enhancing the two-photon excited fluorescence of semiconductor quantum dots

    Resonance energy transfer in self-organized organic/inorganic dendrite structures

    Get PDF
    Hybrid materials formed by semiconductor quantum dots and J-aggregates of cyanine dyes provide a unique combination of enhanced absorption in inorganic constituents with large oscillator strength and extremely narrow exciton bands of the organic component. The optical properties of dendrite structures with fractal dimension 1.7–1.8, formed from J-aggregates integrated with CdTe quantum dots (QDs), have been investigated by photoluminescence spectroscopy and fluorescence lifetime imaging microscopy. Our results demonstrate that (i)J-aggregates are coupled to QDs by F¨orster-type resonant energy transfer and (ii) there are energy fluxes from the periphery to the centre of the structure, where the QD density is higher than in the periphery of the dendrite. Such an anisotropic energy transport can be only observed when dendrites are formed from QDs integrated with J-aggregates. These QD/ J-aggregate hybrid systems can have applications in light harvesting systems and optical sensors with extended absorption spectra.Fundação para a Ciência e a Tecnologia (FCT

    CdTe Quantum Dot/Dye Hybrid System as Photosensitizer for Photodynamic Therapy

    Get PDF
    We have studied the photodynamic properties of novel CdTe quantum dots—methylene blue hybrid photosensitizer. Absorption spectroscopy, photoluminescence spectroscopy, and fluorescence lifetime imaging of this system reveal efficient charge transfer between nanocrystals and the methylene blue dye. Near-infrared photoluminescence measurements provide evidence for an increased efficiency of singlet oxygen production by the methylene blue dye. In vitro studies on the growth of HepG2 and HeLa cancerous cells were also performed, they point toward an improvement in the cell kill efficiency for the methylene blue-semiconductor nanocrystals hybrid system
    • …
    corecore