7 research outputs found
Active learning via informed search in movement parameter space for efficient robot task learning and transfer
Learning complex physical tasks via trial-and-error is still challenging for high-degree-of-freedom robots. Greatest challenges are devising a suitable objective function that defines the task, and the high sample complexity of learning the task. We propose a novel active learning framework, consisting of decoupled task model and exploration components, which does not require an objective function. The task model is specific to a task and maps the parameter space, defining a trial, to the trial outcome space. The exploration component enables efficient search in the trial-parameter space to generate the subsequent most informative trials, by simultaneously exploiting all the information gained from previous trials and reducing the task model’s overall uncertainty. We analyse the performance of our framework in a simulation environment and further validate it on a challenging bimanual-robot puck-passing task. Results show that the robot successfully acquires the necessary skills after only 100 trials without any prior information about the task or target positions. Decoupling the framework’s components also enables efficient skill transfer to new environments which is validated experimentally
Sim-to-real learning for casualty detection from ground projected point cloud data
This paper addresses the problem of human body detection-particularly a human body lying on the ground (a.k.a. casualty)-using point cloud data. This ability to detect a casualty is one of the most important features of mobile rescue robots, in order for them to be able to operate autonomously. We propose a deep-learning-based casualty detection method using a deep convolutional neural network (CNN). This network is trained to be able to detect a casualty using a point-cloud data input. In the method we propose, the point cloud input is pre-processed to generate a depth image-like ground-projected heightmap. This heightmap is generated based on the projected distance of each point onto the detected ground plane within the point cloud data. The generated heightmap-in image form-is then used as an input for the CNN to detect a human body lying on the ground. To train the neural network, we propose a novel sim-to-real approach, in which the network model is trained using synthetic data obtained in simulation and then tested on real sensor data. To make the model transferable to real data implementations, during the training we adopt specific data augmentation strategies with the synthetic training data. The experimental results show that data augmentation introduced during the training process is essential for improving the performance of the trained model on real data. More specifically, the results demonstrate that the data augmentations on raw point-cloud data have contributed to a considerable improvement of the trained model performance
Policy manifold search: exploring the manifold hypothesis for diversity-based neuroevolution
Neuroevolution is an alternative to gradient-based optimisation that has the potential to avoid local minima and allows parallelisation. The main limiting factor is that usually it does not scale well with parameter space dimensionality. Inspired by recent work examining neural network intrinsic dimension and loss landscapes, we hypothesise that there exists a low-dimensional manifold, embedded in the policy network parameter space, around which a high-density of diverse and useful policies are located. This paper proposes a novel method for diversity-based policy search via Neuroevolution, that leverages learned representations of the policy network parameters, by performing policy search in this learned representation space. Our method relies on the Quality-Diversity (QD) framework which provides a principled approach to policy search, and maintains a collection of diverse policies, used as a dataset for learning policy representations. Further, we use the Jacobian of the inverse-mapping function to guide the search in the representation space. This ensures that the generated samples remain in the high-density regions, after mapping back to the original space. Finally, we evaluate our contributions on four continuous-control tasks in simulated environments, and compare to diversity-based baselines
Policy manifold search for improving diversity-based neuroevolution
Diversity-based approaches have recently gained popularity as an alternative paradigm to performance-based policy search. A popular approach from this family, Quality-Diversity (QD), maintains a collection of high-performing policies separated in the diversity-metric space, defined based on policies' rollout behaviours. When policies are parameterised as neural networks, i.e. Neuroevolution, QD tends to not scale well with parameter space dimensionality. Our hypothesis is that there exists a low-dimensional manifold embedded in the policy parameter space, containing a high density of diverse and feasible policies. We propose a novel approach to diversity-based policy search via Neuroevolution, that leverages learned latent representations of the policy parameters which capture the local structure of the data. Our approach iteratively collects policies according to the QD framework, in order to (i) build a collection of diverse policies, (ii) use it to learn a latent representation of the policy parameters, (iii) perform policy search in the learned latent space. We use the Jacobian of the inverse transformation (i.e.reconstruction function) to guide the search in the latent space. This ensures that the generated samples remain in the high-density regions of the original space, after reconstruction. We evaluate our contributions on three continuous control tasks in simulated environments, and compare to diversity-based baselines. The findings suggest that our approach yields a more efficient and robust policy search process
Neural Conditional Ordinal Random Fields for Agreement Level Estimation
We present a novel approach to automated estimation of agreement intensity levels from facial images. To this end, we employ the MAHNOB Mimicry database of subjects recorded during dyadic interactions, where the facial images are annotated in terms of agreement intensity levels using the Likert scale (strong disagreement, disagreement, neutral, agreement and strong agreement). Dynamic modelling of the agreement levels is accomplished by means of a Conditional Ordinal Random Field model. Specifically, we propose a novel Neural Conditional Ordinal Random Field model that performs non-linear feature extraction from face images using the notion of Neural Networks, while also modelling temporal and ordinal relationships between the agreement levels. We show in our experiments that the proposed approach outperforms existing methods for modelling of sequential data. The preliminary results obtained on five subjects demonstrate that the intensity of agreement can successfully be estimated from facial images (39% F1 score) using the proposed method
ResQbot 2.0: an improved design of a mobile rescue robot with an inflatable neck securing device for safe casualty extraction
Despite the fact that a large number of research studies have been conducted in the field of search and rescue robotics, significantly little attention has been given to the development of rescue robots capable of performing physical rescue interventions, including loading and transporting victims to a safe zone—i.e. casualty extraction tasks. The aim of this study is to develop a mobile rescue robot that could assist first responders when saving casualties from a danger area by performing a casualty extraction procedure, whilst ensuring that no additional injury is caused by the operation and no additional lives are put at risk. In this paper, we present a novel design of ResQbot 2.0—a mobile rescue robot designed for performing the casualty extraction task. This robot is a stretcher-type casualty extraction robot, which is a significantly improved version of the initial proof-of-concept prototype, ResQbot (retrospectively referred to as ResQbot 1.0), that has been developed in our previous work. The proposed designs and development of the mechanical system of ResQbot 2.0, as well as the method for safely loading a full body casualty onto the robot’s ‘stretcher bed’, are described in detail based on the conducted literature review, evaluation of our previous work and feedback provided by medical professionals. To verify the proposed design and the casualty extraction procedure, we perform simulation experiments in Gazebo physics engine simulator. The simulation results demonstrate the capability of ResQbot 2.0 to successfully carry out safe casualty extraction