49 research outputs found

    Optimum Injection Current Waveform for a Laser Range Finder Based on the Self-Mixing Effect

    Get PDF
    In a self-mixing type laser range finder the current of the laser is modulated with a triangle wave to produce a range of optical frequencies. However, the electrical signal does not produce a perfect linear sweep in optical frequency due to thermal and other effects in the laser. This leads to errors in the accuracy and resolution of the range finder. In this paper, we describe and implement a method in software to systematically determine the optimal shape of the injected waveform needed to eliminate these thermally induced measurement errors. With this method we do not require the more complicated and expensive optical techniques used by other researchers to recover the optical frequency variations with regard to injection current. The averaging of a reasonable number of samples gave sub-millimeter accuracy when the optimal current shape was used. The uncertainty in the average measurements are improved by roughly six times compared to the conventional triangular modulation. The reshaping also results in the range finding system being less sensitive to changes in ambient temperature

    Laser range finding using the self-mixing effect in a vertical-cavity surface-emitting laser

    Get PDF
    In this paper we report on a laser range finding system built using the self-mixing effect in a Vertical-Cavity Surface-Emitting Laser (VCSEL). The distance to the target in these range finders is usually calculated by determining the time interval between the peaks in the resulting power fluctuations that are produced by the self-mixing effect. In this study we propose the use of a method that utilises the Fast Fourier Transform (FFT) that proves to have better performance than the traditional peak spacing methods used by other researchers. A range finding system has been built using a VCSEL and the FFT to measure a range of distances from 20cm to 1m with a maximum error of 1.5% and a resolution of 5mm. This is the first time to our knowledge that such a range finding system has been built with a VCSEL

    A Critical Comparison of High-Speed VCSEL Characterisation Techniques

    Get PDF
    This paper critically compares, for the first time, common microwave and optical procedures used for the high-speed characterisation of vertical-cavity, surface-emitting lasers (VCSELs). The intrinsic small-signal modulation characteristics of a VCSEL are measured, and the related rate equation parameters are extracted. Observed trends show excellent agreement with theory. The modulation characteristics of the VCSEL are determined by examining three different responses: relative intensity noise, S21 response, and high-resolution optical spectra. The various experimental techniques yielded consistent results. The relative strengths and weaknesses of each measurement are investigated below

    Minimising crosstalk in microchannel free-space optical interconnects with the presence of higher order modes

    Get PDF
    We investigate the combined effect of the diffraction-caused crosstalk noise (DCCN) and the stray-light crosstalk noise (SLCN) on the performance of FSOI system. A numerical simulator was employed in this study to investigate OI channel design. We determine that there exists an optimal focal length, which maximises the signal-to-noise ratio (SNR) by minimising the combined effects of DCCN and SLCN. For the fundamental mode., the optimal focal length is approximately 750 mu m; for both LG(01) and LG(10) modes, the optimal focal length occurs between f = 650 mu m and f = 700 mu m, depending on the interconnection distance and array pitch

    Cultivation of Photosynthetic Bacteria Using Vertical-Cavity Surface-Emitting Lasers

    Get PDF
    We present for the first time experimental results demonstrating the cultivation of photosynthetic microorganisms using laser light. The demonstrated efficiency of the laser source opens the possibility of designing small-scale, energy efficient, compact photobioreactors

    Comparison of stray-light and diffraction-caused crosstalk in free-space optical interconnects

    Get PDF
    In this paper we investigate for the first time the effect of the crosstalk introduced due to laser beam imaging in a free-space optical interconnect (FSOI) system. Due to the overfill of the transmitter microlens array by the vertical cavity surface emitting laser (VCSEL) beam, one part of the signal is imaged by the adjacent microlens to another channel, possibly far from the intended one. Even though this causes increase in interchannel and intersymbol interference, to our knowledge this issue has been neglected so far. The numerical simulation has been performed using a combination of exact ray tracing and the beam propagation methods. The results show that some characteristics of stray-light crosstalk are similar to that of diffraction-caused crosstalk, where it is strongly dependent on the fill factor of the microlens, array pitch, and the channel density of the system. Despite the similarities, the stray-light crosstalk does not affect by an increase in the interconnection distance. As simulation models for optical crosstalk are numerically intensive, we propose here a crosstalk behavioural model as a useful tool for optimisation and design of FSOIs. We show that this simple model compares favourably with the numerical simulation models

    The Effect of Multiple Transverse Modes in Self-Mixing Sensors Based on Vertical-Cavity Surface-Emitting Lasers

    Get PDF
    In this work we investigate the effect of multiple transverse modes, such as those found in Vertical-Cavity Surface-Emitting Lasers, in self-mixing sensors. We show that the sensitivity of the system and the accuracy of the measurement changes periodically with target distance

    A Massively Parallel Imaging System Based on the Self-Mixing Effect in a Vertical-Cavity Surface-Emitting Laser Array

    Get PDF
    In this work we propose a massively parallel self-mixing imaging system, based on an array of VCSELs, to measure surface profiles of displacement, distance, velocity and liquid flow rate. The feasibility of this concept is demonstrated by the successful operation of a small scale prototype consisting of eight individual commercial VCSELs with integrated photodetectors. The system is used to accurately measure the velocity at different radial points on a rotating disk. The results show no influence of crosstalk. A massive version of the system will be useful in many industrial and biomedical applications where real-time surface profiling, vibrometry and velocimetry will be very beneficial

    Experimental Demonstration of Signal-to-Noise-Ratio Improvement of Fourier-Domain Optical Coherence Tomography

    Full text link
    A recent advance in optical coherence tomography (OCT), termed swept-source OCT, is generalized into a new technique, Fourier-domain OCT. It represents a realization of a full-field OCT system in place of the conventional serial image acquisition in transverse directions typically implemented in "flying-spot" mode. To realize the full-field image acquisition, a Fourier holography system illuminated with a swept-source is employed instead of a Michelson interferometer commonly used in OCT. Fourier-domain OCT offers a new leap in signal-to-noise ratio improvement, as compared to flying-spot OCT systems. This paper presents experimental evidence that the signal-to-noise ratio of this new technique is indeed improved.Comment: submitted to Optics Letters 7/14/200
    corecore