13 research outputs found
Tuning spin-orbit coupling and superconductivity at the SrTiO3/LaAlO3 interface: a magneto-transport study
The superconducting transition temperature, Tc, of the SrTiO3/LaAlO3
interface was varied by the electric field effect. The anisotropy of the upper
critical field and the normal state magneto-transport were studied as a
function of gate voltage. The spin-orbit coupling energy is extracted. This
tunable energy scale is used to explain the strong gate dependence of the
mobility and of the anomalous Hall signal observed. The spin-orbit coupling
energy follows Tc for the electric field range under study
Phase coherent transport in SrTiO3/LaAlO3 interfaces
The two dimensional electron gas formed between the two band insulators
SrTiO3 and LaAlO3 exhibits a variety of interesting physical properties which
make it an appealing material for use in future spintronics and/or quantum
computing devices. For this kind of applications electrons have to retain their
phase memory for sufficiently long times or length. Using a mesoscopic size
device we were able to extract the phase coherence length, and its temperature
variation. We find the dephasing rate to have a power law dependence on
temperature. The power depends on the temperature range studied and sheet
resistance as expected from dephasing due to strong electron-electron
interactions.Comment: Submitted to Phys. Rev
Anomalous magneto-transport at the superconducting interface between LaAlO3 and SrTiO3
The magnetoresistance as a function of temperature and field for atomically
flat interfaces between 8 unit cells of LaAlO3 and SrTiO3 is reported.
Anomalous anisotropic behavior of the magnetoresistance is observed below 30 K
for superconducting samples with carrier concentration of 3.5\times10^13 cm^-2
. We associate this behavior to a magnetic order formed at the interface.Comment: 2 pages, 3 figures. Proceedings of the 9th International Conference
on Materials and Mechanisms of Superconductivit
Metallic, magnetic and molecular nanocontacts
Scanning tunnelling microscopy and break-junction experiments realize metallic and molecular nanocontacts that act as ideal one-dimensional channels between macroscopic electrodes. Emergent nanoscale phenomena typical of these systems encompass structural, mechanical, electronic, transport, and magnetic properties. This Review focuses on the theoretical explanation of some of these properties obtained with the help of first-principles methods. By tracing parallel theoretical and experimental developments from the discovery of nanowire formation and conductance quantization in gold nanowires to recent observations of emergent magnetism and Kondo correlations, we exemplify the main concepts and ingredients needed to bring together ab initio calculations and physical observations. It can be anticipated that diode, sensor, spin-valve and spin-filter functionalities relevant for spintronics and molecular electronics applications will benefit from the physical understanding thus obtained
Electron-Vibration Interaction in the Presence of a Switchable Kondo Resonance Realized in a Molecular Junction
The interaction of individual electrons with vibrations has been extensively studied. However, the nature of electron-vibration interaction in the presence of many-body electron correlations such as a Kondo state has not been fully investigated. Here, we present transport measurements on a Copper-phthalocyanine molecule, suspended between two silver electrodes in a break-junction setup. Our measurements reveal both zero bias and satellite conductance peaks, which are identified as Kondo resonances with a similar Kondo temperature. The relation of the satellite peaks to electron-vibration interaction is corroborated using several independent spectroscopic indications, as well as ab initio calculations. Further analysis reveals that the contribution of vibration-induced inelastic current is significant in the presence of a Kondo resonance