159 research outputs found

    Information-based complexity, feedback and dynamics in convex programming

    Get PDF
    We study the intrinsic limitations of sequential convex optimization through the lens of feedback information theory. In the oracle model of optimization, an algorithm queries an {\em oracle} for noisy information about the unknown objective function, and the goal is to (approximately) minimize every function in a given class using as few queries as possible. We show that, in order for a function to be optimized, the algorithm must be able to accumulate enough information about the objective. This, in turn, puts limits on the speed of optimization under specific assumptions on the oracle and the type of feedback. Our techniques are akin to the ones used in statistical literature to obtain minimax lower bounds on the risks of estimation procedures; the notable difference is that, unlike in the case of i.i.d. data, a sequential optimization algorithm can gather observations in a {\em controlled} manner, so that the amount of information at each step is allowed to change in time. In particular, we show that optimization algorithms often obey the law of diminishing returns: the signal-to-noise ratio drops as the optimization algorithm approaches the optimum. To underscore the generality of the tools, we use our approach to derive fundamental lower bounds for a certain active learning problem. Overall, the present work connects the intuitive notions of information in optimization, experimental design, estimation, and active learning to the quantitative notion of Shannon information.Comment: final version; to appear in IEEE Transactions on Information Theor

    No Internal Regret via Neighborhood Watch

    Get PDF
    We present an algorithm which attains O(\sqrt{T}) internal (and thus external) regret for finite games with partial monitoring under the local observability condition. Recently, this condition has been shown by (Bartok, Pal, and Szepesvari, 2011) to imply the O(\sqrt{T}) rate for partial monitoring games against an i.i.d. opponent, and the authors conjectured that the same holds for non-stochastic adversaries. Our result is in the affirmative, and it completes the characterization of possible rates for finite partial-monitoring games, an open question stated by (Cesa-Bianchi, Lugosi, and Stoltz, 2006). Our regret guarantees also hold for the more general model of partial monitoring with random signals

    Optimization, Learning, and Games with Predictable Sequences

    Get PDF
    We provide several applications of Optimistic Mirror Descent, an online learning algorithm based on the idea of predictable sequences. First, we recover the Mirror Prox algorithm for offline optimization, prove an extension to Holder-smooth functions, and apply the results to saddle-point type problems. Next, we prove that a version of Optimistic Mirror Descent (which has a close relation to the Exponential Weights algorithm) can be used by two strongly-uncoupled players in a finite zero-sum matrix game to converge to the minimax equilibrium at the rate of O((log T)/T). This addresses a question of Daskalakis et al 2011. Further, we consider a partial information version of the problem. We then apply the results to convex programming and exhibit a simple algorithm for the approximate Max Flow problem

    Hierarchies of Relaxations for Online Prediction Problems with Evolving Constraints

    Get PDF
    We study online prediction where regret of the algorithm is measured against a benchmark defined via evolving constraints. This framework captures online prediction on graphs, as well as other prediction problems with combinatorial structure. A key aspect here is that finding the optimal benchmark predictor (even in hindsight, given all the data) might be computationally hard due to the combinatorial nature of the constraints. Despite this, we provide polynomial-time \emph{prediction} algorithms that achieve low regret against combinatorial benchmark sets. We do so by building improper learning algorithms based on two ideas that work together. The first is to alleviate part of the computational burden through random playout, and the second is to employ Lasserre semidefinite hierarchies to approximate the resulting integer program. Interestingly, for our prediction algorithms, we only need to compute the values of the semidefinite programs and not the rounded solutions. However, the integrality gap for Lasserre hierarchy \emph{does} enter the generic regret bound in terms of Rademacher complexity of the benchmark set. This establishes a trade-off between the computation time and the regret bound of the algorithm
    • …
    corecore