24 research outputs found
STRONG POSITIONS IN THE NOVEL LUST BY E. JELINEK AND THEIR TRANSLATION
Π Π½Π°ΡΡΠΎΡΡΠ΅ΠΉ ΡΡΠ°ΡΡΠ΅ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΡΡΡ ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½Π°Ρ Π½Π°Π³ΡΡΠ·ΠΊΠ° ΡΠΈΠ»ΡΠ½ΡΡ
ΠΏΠΎΠ·ΠΈΡΠΈΠΉ ΡΠ΅ΠΊΡΡΠ° Π² Ρ
ΡΠ΄ΠΎΠΆΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠΌ Π΄ΠΈΡΠΊΡΡΡΠ΅ ΠΈ ΠΎΠΏΠΈΡΡΠ²Π°ΡΡΡΡ ΠΏΡΠΈΠ΅ΠΌΡ ΠΈΡ
ΠΏΡΠ°Π³ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ Π°Π΄Π°ΠΏΡΠ°ΡΠΈΠΈ ΠΏΡΠΈ ΠΏΠ΅ΡΠ΅Π²ΠΎΠ΄Π΅.Π‘ΠΈΠ»ΡΠ½ΡΠ΅ ΠΏΠΎΠ·ΠΈΡΠΈΠΈ, ΠΊ ΠΊΠΎΡΠΎΡΡΠΌ ΠΏΡΠΈΠ½ΡΡΠΎ ΠΎΡΠ½ΠΎΡΠΈΡΡ Π·Π°Π³Π»Π°Π²ΠΈΠ΅, ΡΠΏΠΈΠ³ΡΠ°Ρ, Π½Π°ΡΠ°Π»ΠΎ ΠΈ ΠΊΠΎΠ½Π΅Ρ ΡΠ΅ΠΊΡΡΠ°, ΠΈΠΌΠ΅ΡΡ ΠΎΠ³ΡΠΎΠΌΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π΄Π»Ρ ΠΎΡΠ³Π°Π½ΠΈΠ·Π°ΡΠΈΠΈ, Π²ΠΎΡΠΏΡΠΈΡΡΠΈΡ ΠΈ ΠΈΠ½ΡΠ΅ΡΠΏΡΠ΅ΡΠ°ΡΠΈΠΈ ΡΠ΅ΠΊΡΡΠ°. ΠΠΌΠ΅Π½Π½ΠΎ ΠΎΠ½ΠΈ, ΡΡΡΡΠΊΡΡΡΠΈΡΡΡ ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΡΡΡΡ Π² ΡΠ΅ΠΊΡΡΠ΅ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΡ, ΠΏΡΠΈΠ²Π»Π΅ΠΊΠ°ΡΡ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ ΡΠΈΡΠ°ΡΠ΅Π»Ρ, ΠΏΠΎΠ΄Π³ΠΎΡΠ°Π²Π»ΠΈΠ²Π°ΡΡ Π΅Π³ΠΎ ΠΊ Π²ΠΎΡΠΏΡΠΈΡΡΠΈΡ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΈ, Π° Π²ΡΡΠ°ΠΆΠ°Ρ Π°Π²ΡΠΎΡΡΠΊΡΡ ΠΈΠ½ΡΠ΅Π½ΡΠΈΡ, ΠΏΠΎΠΌΠΎΠ³Π°ΡΡ ΡΠ΄Π΅Π»Π°ΡΡ Π²ΡΠ²ΠΎΠ΄Ρ ΠΈΠ· ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ ΠΏΡΠΎΡΠΈΡΠ°Π½Π½ΠΎΠ³ΠΎ ΡΠ΅ΠΊΡΡΠ°.ΠΠ°ΠΊ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ, ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΠΈΠ»ΡΠ½ΡΡ
ΠΏΠΎΠ·ΠΈΡΠΈΠΉ ΠΏΡΠΎΠ²ΠΎΠ΄ΡΡΡΡ Π½Π° ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π΅ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΡΠ·ΡΠΊΠ° ΠΈ ΠΎΠ³ΡΠ°Π½ΠΈΡΠΈΠ²Π°ΡΡΡΡ Π²ΡΡΠ²Π»Π΅Π½ΠΈΠ΅ΠΌ ΠΈΡ
ΡΡΠ½ΠΊΡΠΈΠΉ. Π Π΄Π°Π½Π½ΠΎΠΉ ΡΡΠ°ΡΡΠ΅ ΡΠΈΠ»ΡΠ½ΡΠ΅ ΠΏΠΎΠ·ΠΈΡΠΈΠΈ ΡΡΠ°Π²Π½ΠΈΠ²Π°ΡΡΡΡ Π² ΠΈΡΡ
ΠΎΠ΄Π½ΠΎΠΌ ΡΠ΅ΠΊΡΡΠ΅ ΠΈ ΠΏΠ΅ΡΠ΅Π²ΠΎΠ΄Π΅, ΡΡΠΎ ΠΈ ΠΎΠ±ΡΡΠ»ΠΎΠ²ΠΈΠ»ΠΎ Π½ΠΎΠ²ΠΈΠ·Π½Ρ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄Π° ΠΊ ΠΈΡ
ΠΈΠ·ΡΡΠ΅Π½ΠΈΡ. ΠΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠΌ ΠΏΠΎΡΠ»ΡΠΆΠΈΠ» ΡΠΎΠΌΠ°Π½ ΠΠ»ΡΡΡΠΈΠ΄Ρ ΠΠ»ΠΈΠ½Π΅ΠΊ Β«ΠΠΎΡ
ΠΎΡΡΒ» ΠΈ Π΅Π³ΠΎ ΠΏΠ΅ΡΠ΅Π²ΠΎΠ΄, Π²ΡΠΏΠΎΠ»Π½Π΅Π½Π½ΡΠΉ Π.Π. ΠΠ΅Π»ΠΎΠ±ΡΠ°ΡΠΎΠ²ΡΠΌ. ΠΠΊΡΡΠ°Π»ΡΠ½ΠΎΡΡΡ Π΄Π°Π½Π½ΠΎΠΉ ΡΠ°Π±ΠΎΡΡ Π·Π°ΠΊΠ»ΡΡΠ°Π΅ΡΡΡ Π² ΠΈΠ·ΡΡΠ΅Π½ΠΈΠΈ ΠΏΡΠ°Π³ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»Π° ΡΠΈΠ»ΡΠ½ΡΡ
ΠΏΠΎΠ·ΠΈΡΠΈΠΉ ΡΠ΅ΠΊΡΡΠ° Π΄Π»Ρ ΡΠ°ΡΠΊΡΡΡΠΈΡ Π°Π²ΡΠΎΡΡΠΊΠΎΠΉ ΠΈΠ½ΡΠ΅Π½ΡΠΈΠΈ Π½Π° ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π΅ ΡΠΎΠΌΠ°Π½Π° Π. ΠΠ»ΠΈΠ½Π΅ΠΊ.ΠΠ±ΡΠ΅ΠΊΡΠΎΠΌ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΠ²Π»ΡΡΡΡΡ ΡΠΈΠ»ΡΠ½ΡΠ΅ ΠΏΠΎΠ·ΠΈΡΠΈΠΈ ΡΠ΅ΠΊΡΡΠ°-ΠΎΡΠΈΠ³ΠΈΠ½Π°Π»Π° ΠΈ ΡΠ΅ΠΊΡΡΠ°-ΠΏΠ΅ΡΠ΅Π²ΠΎΠ΄Π°.Π¦Π΅Π»ΡΡ Π΄Π°Π½Π½ΠΎΠΉ ΡΡΠ°ΡΡΠΈ ΡΠ²Π»ΡΠ΅ΡΡΡ Π°Π½Π°Π»ΠΈΠ· ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎΠΉ Π½Π°Π³ΡΡΠ·ΠΊΠΈ ΡΠΈΠ»ΡΠ½ΡΡ
ΠΏΠΎΠ·ΠΈΡΠΈΠΉ Π² ΡΠ΅ΠΊΡΡΠ΅ ΠΎΡΠΈΠ³ΠΈΠ½Π°Π»Π° ΡΠΎΠΌΠ°Π½Π° Π. ΠΠ»ΠΈΠ½Π΅ΠΊ Β«ΠΠΎΡ
ΠΎΡΡΒ» ΠΈ Π² ΡΠ΅ΠΊΡΡΠ΅ ΠΏΠ΅ΡΠ΅Π²ΠΎΠ΄Π°. ΠΠ»Ρ Π΄ΠΎΡΡΠΈΠΆΠ΅Π½ΠΈΡ ΡΠΊΠ°Π·Π°Π½Π½ΠΎΠΉ ΡΠ΅Π»ΠΈ Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎ Π±ΡΠ»ΠΎ ΡΠ΅ΡΠΈΡΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠ΅ Π·Π°Π΄Π°ΡΠΈ: ΠΎΠΏΠΈΡΠ°ΡΡ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠΈΠ»ΡΠ½ΡΡ
ΠΏΠΎΠ·ΠΈΡΠΈΠΉ, ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΏΡΠΈΠ΅ΠΌΡ ΠΏΠ΅ΡΠ΅Π²ΠΎΠ΄Π° ΠΈ ΠΎΡΠ΅Π½ΠΈΡΡ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ/Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΠΈΡ
ΠΏΠ΅ΡΠ΅Π΄Π°ΡΠΈ ΠΏΡΠΈ ΡΠ΅Π°Π»ΠΈΠ·Π°ΡΠΈΠΈ ΠΏΡΠ°Π³ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ Π°Π΄Π°ΠΏΡΠ°ΡΠΈΠΈ.ΠΠ΅ΡΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΎΡΠ½ΠΎΠ²ΠΎΠΉ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΠ²Π»ΡΡΡΡΡ ΠΎΡΠ½ΠΎΠ²Π½ΡΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠ΅ΠΎΡΠΈΠΈ ΡΠ΅ΠΊΡΡΠ°, Π»ΠΈΠ½Π³Π²ΠΈΡΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° Ρ
ΡΠ΄ΠΎΠΆΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ ΡΠ΅ΠΊΡΡΠ°, ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΠΈ ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΎΡΠ΅ΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ ΠΈ Π·Π°ΡΡΠ±Π΅ΠΆΠ½ΠΎΠ³ΠΎ ΠΏΠ΅ΡΠ΅Π²ΠΎΠ΄ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ, ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡΠΈΠ΅ ΠΏΠ΅ΡΠ΅Π²ΠΎΠ΄ ΠΊΠ°ΠΊ ΠΊΠΎΠΌΠΌΡΠ½ΠΈΠΊΠ°ΡΠΈΠ²Π½ΡΠΉ Π°ΠΊΡ, ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ ΠΎΠ±ΡΡΠ»ΠΎΠ²Π»Π΅Π½ ΠΊΠ°ΠΊ Π»ΠΈΠ½Π³Π²ΠΈΡΡΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ, ΡΠ°ΠΊ ΠΈ ΡΠΊΡΡΡΠ°Π»ΠΈΠ½Π³Π²ΠΈΡΡΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΡΠ°ΠΊΡΠΎΡΠ°ΠΌΠΈ.ΠΠ΅ΡΠΎΠ΄Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ: ΠΊΠΎΠ½ΡΠ΅ΠΊΡΡΡΠ°Π»ΡΠ½ΡΠΉ Π°Π½Π°Π»ΠΈΠ·, ΡΠΎΠΏΠΎΡΡΠ°Π²ΠΈΡΠ΅Π»ΡΠ½ΡΠΉ Π°Π½Π°Π»ΠΈΠ· ΠΈΡΡ
ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΈ ΠΏΠ΅ΡΠ΅Π²ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΡΠ΅ΠΊΡΡΠ° Ρ ΠΏΠΎΡΠ»Π΅Π΄ΡΡΡΠΈΠΌ Π°Π½Π°Π»ΠΈΠ·ΠΎΠΌ ΠΏΡΠΈΠ΅ΠΌΠΎΠ² ΠΏΠ΅ΡΠ΅Π΄Π°ΡΠΈ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠΉ ΠΌΠ΅ΠΆΠ΄Ρ ΠΎΡΠΈΠ³ΠΈΠ½Π°Π»ΠΎΠΌ ΠΈ ΠΏΠ΅ΡΠ΅Π²ΠΎΠ΄ΠΎΠΌ Π½Π° ΠΊΠΎΠΌΠΌΡΠ½ΠΈΠΊΠ°ΡΠΈΠ²Π½ΠΎ-ΠΏΡΠ°Π³ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΌ ΡΡΠΎΠ²Π½Π΅.ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΎ, ΡΡΠΎ ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΉ ΠΏΡΠΎΠ±Π»Π΅ΠΌΠΎΠΉ ΠΈ ΡΠ»ΠΎΠΆΠ½ΠΎΡΡΡΡ Π΄Π»Ρ ΠΏΠ΅ΡΠ΅Π²ΠΎΠ΄ΡΠΈΠΊΠ° ΡΠ²Π»ΡΠ΅ΡΡΡ Π½Π΅ ΡΠΎΠ»ΡΠΊΠΎ ΡΠ·ΡΠΊΠΎΠ²ΠΎΠΉ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π» ΠΈΡΡ
ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΡΠ΅ΠΊΡΡΠ°, ΡΠΊΠΎΠ»ΡΠΊΠΎ Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎΡΡΡ ΡΠΎΡ
ΡΠ°Π½Π΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ ΡΠΈΠ»ΡΠ½ΡΡ
ΠΏΠΎΠ·ΠΈΡΠΈΠΉ. ΠΠ»Ρ ΡΡΠΎΠ³ΠΎ ΠΏΠ΅ΡΠ΅Π²ΠΎΠ΄ΡΠΈΠΊ ΠΎΠ±ΡΠ°ΡΠ°Π΅ΡΡΡ ΠΊ ΡΠ΅ΠΌ ΠΏΡΠΈΠ΅ΠΌΠ°ΠΌ, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡ Π΅ΠΌΡ ΡΠΎΡ
ΡΠ°Π½ΠΈΡΡ ΠΏΡΠ°Π³ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π» ΠΎΡΠΈΠ³ΠΈΠ½Π°Π»Π° ΠΈ Π΄ΠΎΠ½Π΅ΡΡΠΈ Π΅Π³ΠΎ Π΄ΠΎ ΡΠ΅ΡΠΈΠΏΠΈΠ΅Π½ΡΠ° ΠΏΡΠΈΠ½ΠΈΠΌΠ°ΡΡΠ΅ΠΉ ΠΊΡΠ»ΡΡΡΡΡ. ΠΡΠΎ ΠΏΠΎΠ΄Π±ΠΎΡ ΠΏΡΡΠΌΠΎΠ³ΠΎ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΡ, Π»Π΅ΠΊΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΈ Π³ΡΠ°ΠΌΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ Π·Π°ΠΌΠ΅Π½Ρ, ΡΠΌΡΡΠ»ΠΎΠ²ΠΎΠ΅ ΡΠ°Π·Π²ΠΈΡΠΈΠ΅, ΠΊΠΎΠΌΠΏΠ΅Π½ΡΠ°ΡΠΈΡ ΠΈ Π΄Ρ.ΠΡΠΈ ΡΡΠΏΠ΅ΡΠ½ΠΎΠΌ ΠΏΠ΅ΡΠ΅Π²ΠΎΠ΄Π΅ ΡΠΈΠ»ΡΠ½ΡΡ
ΠΏΠΎΠ·ΠΈΡΠΈΠΉ ΠΈ Π½Π° ΡΠΈΡΠ°ΡΠ΅Π»Ρ ΡΠ΅ΠΊΡΡΠ°-ΠΎΡΠΈΠ³ΠΈΠ½Π°Π»Π° ΠΈ Π½Π° ΡΠ΅ΡΠΈΠΏΠΈΠ΅Π½Ρ ΠΏΠ΅ΡΠ΅Π²ΠΎΠ΄Π° ΠΏΡΠΎΠΈΡΡ
ΠΎΠ΄ΠΈΡ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎΠ΅ ΠΈΠ΄Π΅ΠΉΠ½ΠΎΠ΅, ΡΠΌΠΎΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎΠ΅ ΠΈ ΡΡΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅, Π½Π΅ΡΠΌΠΎΡΡΡ Π½Π° ΡΠΎ, ΡΡΠΎ Π² ΡΠ°Π·Π½ΡΡ
ΠΊΡΠ»ΡΡΡΡΠ°Ρ
ΠΎΠ½ΠΎ Π²Π΅ΡΠ±Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½ΠΎ ΡΠ°Π·Π½ΡΠΌΠΈ ΡΠ·ΡΠΊΠΎΠ²ΡΠΌΠΈ ΡΡΠ΅Π΄ΡΡΠ²Π°ΠΌΠΈ.Π Ρ
ΠΎΠ΄Π΅ Π°Π½Π°Π»ΠΈΠ·Π° Π±ΡΠ»ΠΎ Π²ΡΡΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ ΡΠΈΠ»ΡΠ½ΡΠ΅ ΠΏΠΎΠ·ΠΈΡΠΈΠΈ ΠΌΠΎΠ³ΡΡ Π±ΡΡΡ ΠΏΠ΅ΡΠ΅Π΄Π°Π½Ρ Π² ΠΏΠΎΠ»Π½ΠΎΠΌ ΠΎΠ±ΡΠ΅ΠΌΠ΅ ΠΏΡΠΈ ΡΡΠ»ΠΎΠ²ΠΈΠΈ ΡΠ΅Π°Π»ΠΈΠ·Π°ΡΠΈΠΈ ΠΏΡΠ°Π³ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ Π°Π΄Π°ΠΏΡΠ°ΡΠΈΠΈ.Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΈΠΌΠ΅ΡΡ ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΡΡ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Π½ΠΎΡΡΡ, Ρ.ΠΊ. ΠΎΠ½ΠΈ ΠΌΠΎΠ³ΡΡ Π±ΡΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½Ρ ΠΏΡΠΈ ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π½ΠΈΠΈ ΡΠΈΡΠΎΠΊΠΎΠ³ΠΎ ΠΊΡΡΠ³Π° ΠΏΡΠΎΠ±Π»Π΅ΠΌ ΠΏΡΠΈΠΊΠ»Π°Π΄Π½ΠΎΠ³ΠΎ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠ° Π² ΡΠ΅ΠΎΡΠΈΠΈ ΡΠ΅ΠΊΡΡΠ°, ΡΠ΅ΠΎΡΠΈΠΈ ΠΏΠ΅ΡΠ΅Π²ΠΎΠ΄Π°.In this paper, we consider the functional load of strong positions of text in artistic discourse and describe the techniques for their pragmatic adaptation in translation.The title, epigraph, beginning and end of the text are referred to as strong positions, being of great importance for the organization, perception and interpretation of the text. The strong positions structure the information that the text contains, attract the readerβs attention, prepare them for the perception of information, as well as the way the authorβs intention is expressed, help to draw conclusions from the content of the read text upon reading.As a rule, their studies are conducted on the basis of one language and are limited to identifying their functions. In this article, strong positions are compared in the original text and translation, which is why the novelty of the approach to their study has become evident. The material was a novel Lust by Elfriede Jelinek and its translation by A. Belobratov.The subject of the study are the strong positions in both the original text and in the translated one.The purpose of this article is to analyze the functional load of strong positions in the above-mentioned text and in the text of the translation. To achieve this goal, it was necessary to do the following tasks: describe the functions of strong positions, determine the methods of translation and assess the possibility / impossibility of their transfer in the implementation of pragmatic adaptation.The main principles of the theory of the text, linguistic analysis of the artistic text, development of modern Russian and foreign translation studies, which determine the translation as a communicative act, the result of which is determined by both linguistic and extralinguistic factors, constitute the methodological basis of the research.The following research method were used: the contextual analysis, comparative analysis of the source and translated text, followed by the analysis of the methods of transferring the relation between the original text and its translation at a communicative-pragmatic level.The study showed that the main problem and complexity for the translator is not only the language material of the source text, but also the need to preserve the functions of strong positions. In order to achieve this, the translator refers to those techniques that allow them to preserve the pragmatic potential of the original text and bring it to the recipient of the receiving culture, i.e. a set of direct correspondence, lexical and grammatical substitutions, semantic development, compensation, etc.With the successful transfer of strong positions, both the reader of the original text and the recipient of the translation get a similar ideological, emotional and esoteric impact, despite the fact that in different cultures it is verbalized by using different linguistic means.In the course of the analysis, it was revealed that strong positions can be transferred in full provided that pragmatic adaptation has been implemented.The results of this study can be used when considering the problems of text theory, the theory of translation in applied aspects
Recommended from our members
Reactive plasma cleaning and restoration of transition metal dichalcogenide monolayers
The cleaning of two-dimensional (2D) materials is an essential step in the fabrication of future devices, leveraging their unique physical, optical, and chemical properties. Part of these emerging 2D materials are transition metal dichalcogenides (TMDs). So far there is limited understanding of the cleaning of βmonolayerβ TMD materials. In this study, we report on the use of downstream H2 plasma to clean the surface of monolayer WS2 grown by MOCVD. We demonstrate that high-temperature processing is essential, allowing to maximize the removal rate of polymers and to mitigate damage caused to the WS2 in the form of sulfur vacancies. We show that low temperature in situ carbonyl sulfide (OCS) soak is an efficient way to resulfurize the material, besides high-temperature H2S annealing. The cleaning processes and mechanisms elucidated in this work are tested on back-gated field-effect transistors, confirming that transport properties of WS2 devices can be maintained by the combination of H2 plasma cleaning and OCS restoration. The low-damage plasma cleaning based on H2 and OCS is very reproducible, fast (completed in a few minutes) and uses a 300βmm industrial plasma etch system qualified for standard semiconductor pilot production. This process is, therefore, expected to enable the industrial scale-up of 2D-based devices, co-integrated with silicon technology
Reactive pathways of hydrogen and carbon removal from organosilicate glass low-
Direct molecular dynamic simulation on the base of the density functional theory (DFT) method is used to study some critical reactions of F atoms with organosilicate glass (OSG) low-ΞΊ films. Here static and dynamic DFT-based approaches are applied for a variety of reactive pathways of hydrogen and carbon removal in the form of volatile products (HF, CF2 and CF3 molecules) from initial SiCH3 surface groups. These reactions constitute an important part of the proposed multi-step mechanism of OSG films damage and etching by thermal F atoms. Two models (POSS and TMCTS macromolecules and their modifications) are used to illustrate the peculiarities and dynamics of the successive reactions of F atoms with the initial SiCH3 and appeared SiCHxFy (x + y β€ 3) surface groups
Evaluation of plasma density in RF CCP discharges from ion current to Langmuir probe: experiment and numerical simulation
Experimental measurements of current-voltage relationship in RF CCP discharge in argon atΒ 81Β MHz have been performed by cylindrical Langmuir probes technique. Two different probe radii have been used:Β 50 andΒ 250Β ΞΌm. The high plasma density 1010β1011Β cm-3 has been estimated at specific input power under study. The experimental data on nonmonotonic behavior of probe current with pressure were observed firstly for conditions of RF discharge plasmas. To analyze the probe measurements the fast numerical model for ion current collected by a cylindrical probe has been developed. This model is based on the particle-in-cell with Monte-Carlo collision method for ions motion and Boltzmann relation for electrons. The features of probe data at studied conditions were discussed. The comparative analysis of different collisionless approaches for plasma density calculation from ion probe current is done. It is shown that in general collisionless theories underestimate the plasma density value. For correct evaluation of plasma density experimental I-V probe measurement should be supplied by the numerical simulation. It was demonstrated that the collisionless analytical theory of orbital motion can formally give correct results on plasma density at some plasma conditions even when ion collisions take place. The physical reasons of this accidental validity are explained
O<SUB>2</SUB> dissociation in plasmas and problems of the O<SUB>2</SUB> cross section set
International audienceDC glow discharges in pure O2 in a Pyrex tube were studied to determine dissociation rate constant over a wide range of E/N and thereby to probe O2 dissociation cross section close to threshold. Electric field, E, was found from probe measurements while the gas density, N, from the gas temperature derived from the O2(b1g )  O2(X3g-) emission spectrum. O atom density (as well ratio O/N ratio) was measured by HR TALIF while O/N ratio was also determined by Ar actinometry. Time-resolved actinometry of partially-modulated discharges was used to probe the O loss rate. The O2 dissociation rate constant was determined as a function of E/N, and compared to calculations from different O2 cross section sets. This comparison allowed validation of a the self-consistent cross section set for O2
Effect of energetic ions on plasma damage of porous SiCOH low-k materials
Plasma damage of SiCOH low-k films in an oxygen plasma is studied using a transformer coupled plasma reactor. The concentration of oxygen atoms and O2+ ions is varied by using three different conditions: (1) bottom power only, (2) bottom and top power, and (3) top power only. After plasma exposure, the low-k samples are characterized by various experimental techniques. It is shown that the ion bombardment induced by the bottom power minimizes the plasma damage by increasing the recombination coefficient of oxygen radicals. Contrary to the expectations, the densification of the top surface by ion radiation was limited. The increase in the recombination coefficient is mainly provided by modification of the pore wall surface and creation of chemically active sites stimulating the recombination of oxygen atoms. The results show that a reduction in plasma damage can be achieved without sealing of low-k top surface.status: publishe