17 research outputs found

    Thermo-fluids provisioning of a high performance high density data center,” Hewlett Packard Laboratories

    No full text
    data center, high density, server failure, heat transfer, modeling, provisioning, cooling Consolidation and dense aggregation of slim compute, storage and networking hardware has resulted in high power density data centers. The high power density resulting from current and future generations of servers necessitates detailed thermo-fluids analysis to provision the cooling resources in a given data center for reliable operation. The analysis must also predict the impact on the thermo-fluid distribution due to changes in hardware configuration and building infrastructure such as a sudden failure in data center cooling resources. The objective of the analysis is to assure availability of adequate cooling resources to match the heat load, which is typically non-uniformly distributed and characterized by high-localized power density. This study presents an analysis of an example modern data center with a view of the magnitude of temperature variation and impact of a failure. Initially, static provisioning for a given distribution of heat loads and cooling resources is achieved to produce a reference state. A perturbation in reference state is introduced to simulate a very plausible scenario--failure of a room air conditioning (CRAC) unit. The transient model shows the "redlining " of inlet temperature of systems in the area that is most influenced by the failed CRAC. In this example high-density data center, the time to reach unacceptable inlet temperature is less than 80 seconds based on an example temperature set point limit of 40°C (most of today's servers would require an inlet temperature below 35°C to operate). An effective approach to resolve this issue, if there is adequate capacity, is to migrate the compute workload to other available systems within the data center to reduce the inlet temperature to the servers to an acceptable level

    Two-Phase Loop: Compact Thermosyphon

    No full text
    Table of Contents 2 1

    Local temperature control in data center cooling,” Hewlett Packard Laboratories

    No full text
    data center cooling, smart cooling, local temperature control, vent tile, correlation matrix A data center is a computer room containing a dense aggregation of commodity computing, networking and storage hardware mounted in industry standard racks. With the evolution of microprocessor fabrication technology and the increasing demand of internet, power density has been growing from the chip level to the data center level. As a result, mechanical designers face the challenge of handling heat dissipation efficiently in a data center. This paper demonstrates the possibility of optimizing local temperature distribution using vent tiles. In the proposed experiments, the relationship between rack inlet temperature and vent tile configuration is analyzed, and used to demonstrate the effectiveness of a local control algorithm through a control simulation
    corecore