34 research outputs found

    ISOLATION AND CHARACTERIZATION OF ENDOPHYTIC FUNGI FROM MEDICINAL PLANT CRESCENTIA CUJETE L. AND THEIR ANTIBACTERIAL, ANTIOXIDANT AND ANTICANCER PROPERTIES

    Get PDF
    Objective: The present study was aimed to isolate endophytic fungi from ethano-medicinally important plant Crescentia cujete L. in view to screen their bioactive principles towards different pharmacological applications. Methods: A total of four morphologically distinct endophytic fungi were isolated and identified via analyzing their ITS region of 5.8s rRNA and sequences were submitted in Genbank. The recovered four isolates were further cultivated in Czapek-Dox broth, from this extra cellular bioactive metabolites has been extracted using ethyl acetate for their different biological activities. DPPH assay was performed to measure the free-radical scavenging activity of extracts and antibacterial property was assessed through disc diffusion method. On the other hand, the cytotoxic potential of fungal extracts against hepatocellular carcinoma cell lines (HepG2) was studied by MTT assay, AO-EB and Hoechest staining methods under in vitro condition. Most importantly, the active compounds present in the solvent extracts were identified through GC-MS analysis.Results: The fungal extracts showed a strong growth inhibitory effect against bacterial human pathogens and excellent free radical scavenging activity. It also exhibits excellent antiproliferative effect against hepatocellular carcinoma cells, further it was observed that the cell death was primarily mediated by apoptosis. The active compounds present in the extracts were identified through GC-MS analysis, which depicts the presence of aspirin and diethyl phthalate as the major constituents.Conclusion: Overall, this study strongly suggests that extracts of isolated endophytic fungi from C. cujete L. can be developed as a lead/drug molecule in view of pharmaceutical context.Ă‚

    A COMPUTATIONAL APPROACH ON UNDERSTANDING STRUCTURAL INTERACTIONS OF ENVELOPE PROTEIN OF DENGUE VIRUS BOUND WITH SQUALENE, A PROTOTYPE ANTI-VIRAL COMPOUND

    Get PDF
    Objective: The objective of the work was to validate the structural binding affinity of Squalene with the envelope protein of Dengue virus by means of molecular simulations. Methods: Three-dimensional (3D) structure of dengue 2 virus envelope protein was retrieved from Protein Data Bank PDB and Squalene compound from the ZINC database. Molecular docking between the E protein and Squalene were carried out by means of Auto Dock 4.2. Results: Based on the study, it was observed that the binding/docking energy for the complex structure was calculated to be-5.55 kcal/mol. Critical residues to interact with E protein were scrutinized by analyzing the interface of the complex within 4 Ă… proximity. Residues such as Thr 48, Glu49, Ala 50, Val 130, Leu 135, Ser 186, Pro 187, Thr 189, Gly 190, Leu 191, Phe 193, Leu 198, Leu 207, Thr 268, Phe 279, Thr 280, Gly 281, His 282 and Leu 283 were found to be non-covalently located around the squalene. Conclusion: Scopes to design de novo anti-viral compounds to the dengue viruses by using squalene as a new class of template structure have also been concisely brought into fore

    Assessment of anticancer properties of cumin seed (Cuminum cyminum) against bone cancer

    Get PDF
    IntroductionEarly-life osteosarcoma is associated with severe morbidity and mortality, particularly affecting young children and adults. The present cancer treatment regimen is exceedingly costly, and medications like ifosfamide, doxorubicin, and cisplatin have unneeded negative effects on the body. With the introduction of hyphenated technology to create medications based on plant molecules, the application of ayurvedic medicine as a new dimension (formulation, active ingredients, and nanoparticles) in the modern period is rapidly growing. The primary source of lead compounds for the development of medications for avariety of ailments is plants and their products. Traditionally, Cuminum cyminum (cumin) has been used as medication to treat a variety of illnesses and conditions.MethodsThe cumin seed was successfully extracted with solvents Hexane, Chloroform, Methanol, Ethanol and Acetone. Following the solvent extraction, the extract residue was assayed in MG63 cells for their anti-proliferative properties. ResultsFirst, we used the [3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide] (MTT) assay to test the extracted residue’s cytotoxicity. The results show that hexane extract Half-maximal inhibitory concentration (IC50 86 µG/mL) effciently inhibits cells by causing programmed cell death. Furthermore, using the Acridine orange/ethidium bromide (AO/EB) staining method, the lactate dehydrogenase assay, and the reactive oxygen species assay using the Dichloro-dihydro-fluorescein diacetate (DCHFDA) staining method, we have demonstrated that the hexane extract causes apoptosis in MG63 cells. Furthermore, flow cytometry research revealed that the hexane extract stops the cell cycle in the S phase. In addition, the hexane extract limits colony formation and the migration potential as shown by the scratch wound healing assay. Furthermore, the extract from cumin seeds exhibits remarkable bactericidal properties against infections that are resistant to drugs. Gas chromatography analysis was used to quantitatively determine the hexane and methanolic extract based on the experimental data. The primary chemical components of the extract are revealed by the study, and these help the malignant cells heal. The present study finds that there is scientific validity in using cumin seeds as a novel method of anticancer therapy after undergoing both intrinsic and extrinsic research

    Plant-Mediated Synthesis of Silver Nanoparticles: Their Characteristic Properties and Therapeutic Applications

    Get PDF

    ANTIBACTERIAL ACTIVITY OF INDIGENOUS ENTOMOPATHOGENIC FUNGUS METARHIZIUM ANISOPLIAE AGAINST CLINICALLY ISOLATED HUMAN PATHOGENS

    No full text
    Objectives: The aim of this study was to determine the bactericidal effect of indigenously isolated entomopathogenic fungus Metarhizium anisopliae against clinically isolated human pathogens such as Bacillus subtills, Pseudomonas spp, Proteus spp, Staphylococcus aureus, E.coli, Shigella spp, Entrocooci spp. Methods: The isolated fungus was mass cultivated in liquid state fermentation and the extracellular products were extracted with dichloromethane. With the support of preparative high performance liquid chromatography (HPLC) the extract was separated and the active metabolites were characterized. Further, the extract was tested for its bactericidal efficacy against clinically isolated human pathogens via well diffusion method. Briefly, different concentrations of the extracts were loaded onto the bacterial culture growing in nutrient agar plates. Results: Formation of clear zones after 24h of incubation indicates the significant inhibitory action of active metabolites present in the three different concentrations (25µl, 50µl, 75µl) of crude extract. High level exhibit best inhibitory activity was found against B.subtills (26.4±0.1), Conclusion: The findings of this preliminary study gives overview idea about the differential anti-bacterial property of M. anisopliae and additionally it will help us to find specific antibiotic products for biomedical applications

    Facile synthesis of silver nanoparticles using Euphorbia antiquorum L. latex extract and evaluation of their biomedical perspectives as anticancer agents

    No full text
    This study reveals the rapid biosynthesis of silver nanoparticles (EAAgNPs) using aqueous latex extract of Euphorbia antiquorum L as a potential bioreductant. Synthesized EAAgNPs generate the surface plasmonic resonance peak at 438 nm in UVâVis spectrophotometer. Size and shape of EAAgNPs were further characterized through transmission electron microscope (TEM) which shows well-dispersed spherical nanoparticles with size ranging from 10 to 50 nm. Energy dispersive X-ray spectroscopic analysis (EDAX) confirms the presence of silver (Ag) as the major constituent element. X-ray diffraction (XRD) pattern of EAAgNPs corresponding to (111), (200), (220) and (311) planes, reveals that the generated nanoparticles were face centered cubic crystalline in nature. Interestingly, fourier-transform infrared spectroscopy (FTIR) analysis shows the major role of active phenolic constituents in reduction and stabilization of EAAgNPs. Phyto-fabricated EAAgNPs exhibits significant antimicrobial and larvicidal activity against bacterial human pathogens as well as disease transmitting blood sucking parasites such as Culex quinquefasciatus and Aedes aegypti (IIIrd instar larvae). On the other hand, in vitro cytotoxicity assessment of bioformulated EAAgNPs has shown potential anticancer activity against human cervical carcinoma cells (HeLa). The preliminary biochemical (MTT assay) and microscopic studies depict that the synthesized EAAgNPs at minimal dosage (IC50 = 28 μg) triggers cellular toxicity response. Hence, the EAAgNPs can be considered as an environmentally benign and non-toxic nanobiomaterial for biomedical applications. Keywords: Crystal structure, Euphorbia antiquorum L., Silver nanoparticles, Anticancer, Human pathogen

    Green Synthesis of Gold Nanoparticles Using <i>Polianthes tuberosa</i> L. Floral Extract

    No full text
    The developments of green-based metallic nanoparticles (gold) are gaining tremendous interest, having potential applications in health care and diagnosis. Therefore, in the present study, Polianthes tuberosa flower filtered extract was used as a reducing and stabilizing agent to synthesize gold nanoparticles (PtubAuNPs). The PtubAuNPs were extensively characterized by UV–visible spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, and X-ray diffraction. The antibacterial activity of PtubAuNPs was determined by the agar well diffusion method; the PtubAuNPs performed extreme antagonistic activity against the tested pathogens. Furthermore, the cytotoxicity of the PtubAuNPs was evaluated in MCF 7 cells by MTT assay. The PtubAuNPs induced toxicity in MCF 7 cells with the least concentration of 100 µg/mL in a dose-dependent method by inducing apoptosis. Overall, the study manifested that PtubAuNPs are a potent nanomaterial that can be employed as an antimicrobial and anticancer agent
    corecore