179 research outputs found

    Safety and Tolerability: How Do Newer Generation “Atypical” Antipsychotics Compare?

    Full text link
    Previously, clinicians worked with antipsychotic drugs that almost invariably caused extrapyramidal side effects (EPS) at the dose at which they were clinically effective. By definition, all newer generation atypical antipsychotic agents are significantly better than conventional agents with regard to EPS; i.e., they are clinically effective at doses at which they do not cause EPS. This EPS advantage of atypical antipsychotics translates into several important clinical benefits, including better negative symptom efficacy, lesser dysphoria, less impaired cognition, and a lower risk of tardive dyskinesia; in fact, this “EPS advantage” is the principal basis of the many clinical advantages provided by the class of atypical antipsychotics. While all atypical agents share this “EPS advantage,” there are important differences between these agents with regard to the ease and consistency with which this EPS advantage can be realized. Pharmacologically, different atypical antipsychotics differ; these differences translate into differences in their side effect profiles. Five atypical antipsychotics are currently available: clozapine, risperidone, olanzapine, quetiapine, and ziprasidone. Meaningful differences between these agents with regard to weight gain, sedation, anticholinergic side effects, cardiovascular issues, endocrine side effects, hepatic and sexual issues, will be considered and their clinical implications discussed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43990/1/11126_2004_Article_375281.pd

    Abnormal phosphoinositide turnover in schizophrenia

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/29487/1/0000573.pd

    Extrapyramidal Side Effects of Antipsychotic Treatment: Scope of Problem and Impact on Outcome

    Full text link
    clinicians worked with antipsychotic drugs (conventional or typical) that almost invariably caused extrapyramidal symptoms (EPS) at clinically effective doses. This led to the false impression that all antipsychotics were the same, and that EPS were an unavoidable consequence of effective antipsychotic therapy. EPS adversely impact several aspects of antipsychotic efficacy and tolerability, thereby worsening outcome of afflicted individuals. EPS reduce beneficial effects of antipsychotic treatment on the negative, cognitive, and mood symptom domains, while increasing the risk of tardive dyskinesia and reducing compliance. By definition, the newer generation of “atypical” antipsychotic agents are significantly better than conventional agents with regard to EPS (i.e., they are clinically effective at doses at which they do not cause EPS). Pharmacologically, this difference is expressed in the greater degree of separation between respective dose response curves for antipsychotic and EPS effects observed for “atypical” in contrast to conventional agents. Clinically, this EPS advantage of atypical antipsychotics translates into several important benefits, including better negative symptom efficacy, less dysphoria, less impaired cognition, a lower risk of TD, and better overall outcome.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44008/1/10442_2004_Article_377854.pd

    Vector Delivery Technique Affects Gene Transfer in the Cornea \u3cem\u3ein vivo\u3c/em\u3e

    Get PDF
    Purpose: This study tested whether controlled drying of the cornea increases vector absorption in mouse and rabbit corneas in vivo and human cornea ex vivo, and studied the effects of corneal drying on gene transfer, structure and inflammatory reaction in the mouse cornea in vivo. Methods: Female C57 black mice and New Zealand White rabbits were used for in vivo studies. Donor human corneas were used for ex vivo experiments. A hair dryer was used for drying the corneas after removing corneal epithelium by gentle scraping. The corneas received no, once, twice, thrice, or five times warm air for 10 s with a 5 s interval after each 10 s hair dryer application. Thereafter, balanced salt solution (BSS) was topically applied immediately on the cornea for 2 min using a custom-cloning cylinder. The absorbed BSS was quantified using Hamilton microsyringes. The adenoassociated virus 8 (AAV8) vector (1.1×108 genomic copies/μl) expressing marker gene was used to study the effect of corneal drying on gene transfer. Animals were sacrificed on day 14 and gene expression was analyzed using commercial staining kit. Morphological changes and infiltration of inflammatory cells were examined with H & E staining and immunocytochemistry. Results: Mice, rabbit or human corneas subjected to no or 10 s drying showed 6%–8% BSS absorption whereas 20, 30, or 50 s corneal drying showed significantly high 14%–19% (pin vivowith mild-to-moderate changes in corneal morphology. The 30 s of drying also showed significantly (pin vivowithout jeopardizing corneal morphology whereas 10 or 20 s drying showed moderate degree of gene transfer with no altered corneal morphology. Corneas that underwent 50 s drying showed high CD11b-positive cells (p Conclusions: Controlled corneal drying with hair dryer increases vector absorption significantly. The dispensing of efficacious AAV serotype into cornea with optimized minimally invasive topical application technique could provide high and targeted expression of therapeutic genes in the stroma in vivo without causing significant side effects

    Negative symptoms of schizophrenia: The need for conceptual clarity

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/29173/1/0000219.pd

    Attenuation of corneal myofibroblast development through nanoparticle-mediated soluble transforming growth factor-β type II receptor (sTGFβRII) gene transfer

    Get PDF
    Purpose: To explore (i) the potential of polyethylenimine (PEI)-DNA nanoparticles as a vector for delivering genes into human corneal fibroblasts, and (ii) whether the nanoparticle-mediated soluble extracellular domain of the transforming growth factor–β type II receptor (sTGFβRII) gene therapy could be used to reduce myofibroblasts and fibrosis in the cornea using an in vitro model. Methods: PEI-DNA nanoparticles were prepared at a nitrogen-to-phosphate ratio of 30 by mixing linear PEI and a plasmid encoding sTGFβRII conjugated to the fragment crystallizable (Fc) portion of human immunoglobulin. The PEI-DNA polyplex formation was confirmed through gel retardation assay. Human corneal fibroblasts (HCFs) were generated from donor corneas; myofibroblasts and fibrosis were induced with TGFβ1 (1 ng/ml) stimulation employing serum-free conditions. The sTGFβRII conjugated to the Fc portion of human immunoglobulin gene was introduced into HCF using either PEI-DNA nanoparticles or Lipofectamine. Suitable negative and positive controls to compare selected nanoparticle and therapeutic gene efficiency were included. Delivered gene copies and mRNA (mRNA) expression were quantified with real-time quantitative PCR (qPCR) and protein with enzyme-linked immunosorbent assay (ELISA). The changes in fibrosis parameters were quantified by measuring fibrosis marker α-smooth muscle actin (SMA) mRNA and protein levels with qPCR, immunostaining, and immunoblotting. Cytotoxicity was determined using cellular viability, proliferation, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Results: PEI readily bound to plasmids to form nanoparticular polyplexes and exhibited much greater transfection efficiency (p<0.01) than the commercial reagent Lipofectamine. The PEI-DNA-treated cultures showed 4.5×10[superscript 4] plasmid copies/µg DNA in real-time qPCR and 7,030±87 pg/ml sTGFβRII protein in ELISA analyses, whereas Lipofectamine-transfected cultures demonstrated 1.9×10[superscript 3] gene copies/µg DNA and 1,640±100 pg/ml sTGFβRII protein during these assays. The PEI-mediated sTGFβRII delivery remarkably attenuated TGFβ1-induced transdifferentiation of corneal fibroblasts to myofibroblasts in cultures, as indicated by threefold lower levels of SMA mRNA (p<0.01) and significant inhibition of SMA protein (up to 96±3%; p<0.001 compared to no-gene-delivered cultures) in immunocytochemical staining and immunoblotting. The nanoparticle-mediated delivery of sTGFβRII showed significantly better antifibrotic effects than the Lipofectamine under similar experimental conditions. However, the inhibition of myofibroblast in HCF cultures by sTGFβRII overexpression by either method was significantly higher than the naked vector transfection. Furthermore, PEI- or Lipofectamine-mediated sTGFβRII delivery into HCF did not alter cellular proliferation or phenotype at 12 and 24 h post-treatment. Nanoparticles treated with HCF showed more than 90% cellular viability and very low cell death (2–6 TUNEL+ cells), suggesting that the tested doses of PEI-nanoparticles do not induce significant cell death. Conclusions: This study demonstrated that PEI-DNA nanoparticles are an attractive vector for the development of nonviral corneal gene therapy approaches and that the sTGFβRII gene delivery into keratocytes could be used to control corneal fibrosis in vivo.National Institutes of Health (U.S.) (RO1EB000244

    Role of Transforming Growth Factor Beta in Corneal Function, Biology and Pathology

    Get PDF
    Transforming growth factor-beta (TGFβ) is a pleiotropic multifunctional cytokine that regulates several essential cellular processes in many parts of the body including the cornea. Three isoforms of TGFβ are known in mammals and the human cornea expresses all of them. TGFβ1 has been shown to play a central role in scar formation in adult corneas whereas TGFβ2 and TGFβ3 have been implicated to play a critical role in corneal development and scarless wound healing during embryogenesis. The biological effects of TGFβ in the cornea have been shown to follow SMAD dependent as well as SMAD-independent signaling pathways depending upon cellular responses and microenvironment. Corneal TGFβ expression is necessary for maintaining corneal integrity and corneal wound healing. On the other hand, TGFβ is perhaps the most important cytokine in the pathogenesis of fibrotic disease in the cornea. Although the transformation of keratocytes to myofibroblasts induced by TGFβ is largely believed to cause corneal fibrosis or scarring, the precise molecular mechanism(s) involved in this process is still unknown. Currently no drugs are available to treat corneal scarring effectively without causing significant side effects. Many approaches to treat TGFβ-mediated corneal scarring are under investigation. These include blocking of TGFβ, TGFβ receptor, TGFβ function and/or TGFβ maturation. Other strategies such as modulating keratocyte proliferation, apoptosis, transcription and DNA condensation are also being investigated. The potential of gene therapy to neutralize the pathologic effects of TGFβ has also been demonstrated recently
    corecore