85 research outputs found

    Microbial Extraction of Cobalt and Nickel from Lateritic Chromite Overburden using Aspergillus wentii

    Get PDF
    ABSTRACT Low-grade nickeliferous lateritic ore from Sukinda region of Orissa, India, was subjected to biohydrometallurgical treatment for the extraction of nickel and cobalt. The mineralogical studies reveal that nickel is entrapped in goethite matrix while cobalt is associated with the manganese phase. Aspergillus wentii NCIM 667, a citric acid producing fungal strain, was used for direct (one step and two step) and indirect (using culture filtrate) leaching of the metals under different conditions. The effect of varying pulp density (2%, 5%, 8%) and culture medium composition (viz. molasses and sucrose media) was investigated and the leaching conditions optimized. It was found that a maximum of 49.29% Ni and 35.18% Co could be recovered from the heat-treated lateritic chromite overburden by the culture filtrate bioleaching at 80°C with 2% pulp density

    Novel Microbial System Developed from Low-Level Radioactive Waste Treatment Plant for Environmental Sustenance

    Get PDF
    A packed bed bioreactor efficiently treated low-level radioactive waste for years with a retention time of 24 h using acetate as the sole carbon source. However, there was generation of dead biomass. This bioreactor biomass was used to develop a bacterial consortium, which could perform the function within 4 h while simultaneously accumulating nitrate and phosphate. The dead mass was negligible. Serial dilution technique was used to isolate the world’s first pure culture of a nitrate accumulating strain from this consortium. This isolate could simultaneously accumulate nitrate and phosphate from solution. Its ability to form biofilm helped develop a packed bed bioreactor system for waste water treatment, which could optimally remove 94.46% nitrate within 11 h in batch mode while 8 h in continuous mode from waste water starting from 275 ppm of nitrate. The conventional approach revealed the strain to be a member of genus Bacillus but showed distinct differences with the type strains. Further insilico analysis of the draft genome and the putative protein sequences using the bioinformatics tools revealed the strain to be a novel variant of genus Bacillus. The sequestered nitrate and phosphate within the cell were visualized through electron microscopy and explained the reason behind the ability of the isolate to accumulate 1.12 mg of phosphate and 1.3 gm of nitrate per gram of wet weight. Transcriptome analysis proposed the mechanism behind the accumulation of nitrate and phosphate in case of this novel bacterial isolate (MCC 0008). The strain with the sequestered nutrients work as biofertilizer for yield enhancement in case of mung bean while maintaining soil fertility post-cultivation

    Discrimination of green tea using an Epigallocatechin-3-gallate (EGCG) sensitive molecular imprinted polymer (MIP) based electrode

    Get PDF
    In this work, a simple approach of discriminating green tea samples has been proposed using an epigallocatechin-3-gallate (EGCG) sensitive molecular imprinted polymer (MIP) electrode modified with chemically synthesized nickel hydroxide (Ni(OH)2) nanoparticles. The nanoparticles were characterized by powder X-ray diffraction techniques (XRD) and the removal of the template molecule has been ascertained by UV-vis spectroscopy. A three electrode system has been employed to study the electrochemical characteristics of the electrode by means cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Four different kinds of preprocessing techniques, namely – (i) Baseline subtraction, (ii) Autoscale, (iii) Relative scale 1 and (iv) Relative scale 2 were applied on the obtained data set and the best preprocessing technique was optimized. Further, principal component analysis (PCA) and linear discriminant analysis (LDA) were implemented on the preprocessed data set so as to observe the discrimination ability of the electrode on the basis of EGCG content in green tea. The separability index (SI) values for both PCA and LDA plots is calculated and it is observed that baseline subtraction provided the best result with a SI value of 8.72 and 16.01, respectively

    Microbe-Based Strategy for Plant Nutrient Management

    Get PDF
    The rapid industrialization and urbanization of developing countries such as India have encroached on cultivable lands to meet the demands of an ever-increasing population. The altered land use patterns with increased fertilizer use has increased crop yields with leaching of major portion of the applied nutrients from the soil. Nitrates and phosphates are the agricultural pollutants that are discharged into aquifers due to anthropogenic reasons causing severe environmental and health problems. Production of these nutrients requires energy and finite resources (rock phosphate, which has gradually depleting reserves). An alternative management strategy would be to sequester excess nutrients within a biomass that is reused for agriculture. Two discrete enriched microbial consortia with the potential of simultaneous nitrate and phosphate sequestration upon application as biofertilizer restricted them within the plant root zone, ensuring prevention of eutrophication through leaching while making it available for uptake by plants. The nutrient accumulated biomass enhanced the crop yield by 21.88% during mung bean cultivation with maintained elemental content and other nutritional qualities. The major drawback of conventional biofertilizer application (slow release and action) could be overcome using this formulation leading to environmental protection, crop yield enhancement and soil fertility maintenance post-cultivation

    Effect of temperature and time delay in centrifugation on stability of select biomarkers of nutrition and non-communicable diseases in blood samples

    Get PDF
    Introduction: Preanalytical conditions are critical for blood sample integrity and poses challenge in surveys involving biochemical measurements. A cross sectional study was conducted to assess the stability of select biomarkers at conditions that mimic field situations in surveys. Material and methods: Blood from 420 volunteers was exposed to 2 – 8 °C, room temperature (RT), 22 – 30 °C and > 30 °C for 30 min, 6 hours, 12 hours and 24 hours prior to centrifugation. After different exposures, whole blood (N = 35) was used to assess stability of haemoglobin, HbA1c and erythrocyte folate; serum (N = 35) for assessing stability of ferritin, C-reactive protein (CRP), vitamins B12, A and D, zinc, soluble transferrin receptor (sTfR), total cholesterol, high density lipoprotein cholesterol (HDL), low density lipoprotein cholesterol (LDL), tryglicerides, albumin, total protein and creatinine; and plasma (N = 35) was used for glucose. The mean % deviation of the analytes was compared with the total change limit (TCL), computed from analytical and intra-individual imprecision. Values that were within the TCL were deemed to be stable. Result: Creatinine (mean % deviation 14.6, TCL 5.9), haemoglobin (16.4%, TCL 4.4) and folate (33.6%, TCL 22.6) were unstable after 12 hours at 22- 30°C, a temperature at which other analytes were stable. Creatinine was unstable even at RT for 12 hours (mean % deviation: 10.4). Albumin, CRP, glucose, cholesterol, LDL, triglycerides, vitamins B12 and A, sTfR and HbA1c were stable at all studied conditions. Conclusion: All analytes other than creatinine, folate and haemoglobin can be reliably estimated in blood samples exposed to 22-30°C for 12 hours in community-based studies

    Growth, nodulation, yield, nitrogen uptake, and economics of lentil as influenced by sowing time, tillage, and management practices

    Get PDF
    Crop management practices and variety are two very important parameters that decides the crop performance. A field experiment was carried out during the two consecutive rabi seasons of 2018–19 and 2019–20 to determine the impact of sowing timing, tillage operation, and variety on the growth, development, yield characteristics, and nitrogen uptake in lentil crops. The experiment was conducted in a split-split plot design with 3 replications comprising two different sowing conditions (S1: early sowing after harvesting of short duration kharif rice, S2: delayed sowing after harvesting of long duration kharif rice) in main plots, three different tillage operations (T1: Relay cropping, T2: Zero tillage, T3: Conventional tillage) in subplots and two different varieties (V1: short duration: L4717, V2: long period: Moitri) in subplots. The findings demonstrated a substantial interaction between sowing time, tillage, and variety on various growth and yield parameters of lentil crops. The early sowing of lentil crops (early November) yielded 4.8% more (1,105 kg ha−1) than late November sowing and adapting to the short-duration variety L4717 over the long-duration cultivar Moitri resulted in a yield increase of 5.9% (1,086 kg ha−1). Apart from providing a higher yield, it also provided an opportunity to take another crop like leafy vegetables. Among the three tillage practices adopted, conventional tillage produced the lowest yield (1,017 kg ha−1) in both experimental years. In contrast, a yield increase of 6.9% and 26.9% in relay cropping and zero tillage systems was observed, respectively. Early-sown lentils with no-tillage and a short-duration variety reached a certain phenophase faster than other combinations (life cycle: 96.2 and 98.7 days for lentils in both years). For both the sowing times, the growth parameters and the number of nodules plant−1 were highly correlated with nitrogen uptake at different stages of the life cycle. High net returns (Rs. 51,220 and 59,257) leading to higher benefit-cost ratios were observed under the treatment combination of early sowing + zero tillage + short duration variety. Therefore, the study found that short-duration lentil cultivars in combination with early sowing in the zero-tillage system are the best agronomic approach for the sustainability of lentil production after the monsoon rice harvest

    Neonatal erythroderma: Diagnostic and therapeutic challenges

    No full text
    Erythroderma a life-threatening entity during the fi rst one month, and many a time, a manifestation of genodermatosis, immune defi ciency, psoriasis, metabolic diseases, and infections. Atopic dermatitis presenting as erythroderma is usually observed later, after this one-month period, and hence not a common differential for neonatal exfoliative dermatitis. Although a rare entity, there is a paucity of studies on this and in contrast to adults, some may manifest as cardinal signs of primary disease conditions
    corecore