7 research outputs found

    BI-GELS: A NOVEL MATERIAL FOR TRANSDERMAL DRUG DELIVERY

    Get PDF
    Bi-gels semi solid formulation is combination of organogel and hydrogel with better application property such as pharmaceutical and cosmetics. The main objective of this review is specially focuses on application of bi-gels as drug delivery vehicles by transdermal route. It contains two different phases which are polar and nonpolar due to which, it possess some significant features such as ability to deliver the hydrophilic and hydrophobic drugs which also have improved permeability of drugs, better spreading ability, and water wash ability. Hence, bigels have both organogels and hydrogels they can enhanced hydration of stratum corneum and also had an ability to manipulate the drug release rate from the dosage from

    MICROSPONGES AS A NEOTERIC CORNUCOPIA FOR DRUG DELIVERY SYSTEMS

    Get PDF
    Microsponges (MSPs) are at the forefront of the rapidly developing field of novel drug delivery systems which are gaining popularity due to their use for controlled release and targeted drug delivery. The microsponge delivery system (MDS) is a patented polymeric system consisting of porous microspheres typically 10-25 microns in diameter, loaded with an active agent. They are tiny sponge-like spherical particles that consist of a myriad of interconnecting voids within a non-collapsible structure with a large porous surface through which active ingredient is released in a controlled manner. Microsponge also hold a certification as one of the potential approaches for gastric retention where many oral dosage forms face several physiological restrictions due to non-uniform absorption pattern, inadequate medication release and shorter residence time in the stomach. This type of drug delivery system which is non-irritating, non-allergic, non-toxic, can suspend or entrap a wide variety of substances, and can then be incorporated into a formulated product such as gel, cream, liquid or powder that is why it is called as a “versatile drug delivery system”. It overcomes the drawbacks of other formulations such as frequency of dosing, drug reaction, incompatibility with environmental condition. These porous microspheres were exclusively designed for chronotherapeutic topical drug delivery but attempt to utilize them for oral, pulmonary and parenteral drug delivery were also made. The present review elaborates about the multifunctional microsponge technology including its preparation, characterization, evaluation methods along with recent research and future potential

    FORMULATION AND EVALUATION OF FAMOTIDINE FAST DISSOLVING TABLETS USING SYNTHETIC SUPERDISINTEGRANTS

    Get PDF
    Objective: The main aim of the present research work was to formulate fast dissolving tablets of famotidine by direct compression method and to evaluate the effect of synthetic super disintegrating agent on drug release pattern. Methods: The fast dissolving tablets were prepared by using crospovidone, croscarmellose sodium, sodium starch glycolate as superdisintegrants (2, 4 and 6 %w/w), mannitol 20 % and microcrystalline cellulose (44, 46 and 48 % w/w) as a directly compressible vehicle. All the prepared tablets were evaluated for hardness, friability, drug content uniformity, weight variation, disintegrating time, wetting time and in vitro drug release studies. Results: All the prepared fast dissolving tablets formulations were within the Pharmacopoeial standards limits. Based on in vitro drug release studies (>90 % within 30 min), the optimised formulations were optimised tested for the short term stability (at 40 ËšC/75% RH for 3 mo) and drug excipient interaction (fourier transform infrared spectroscopy). Conclusion: Hence, formulation prepared with 6 % w/w of crosspovidine and 44 % w/w of microcrystalline cellulose as emerged as the overall best formulation (>90 % within 30 min) compared to marketed product (>70 % within 30 min). Short-term stability studies on the formulations indicated that there are no significant changes in drug content and in vitro drug release (p<0.05)

    PREPARATION AND EVALUATION OF ORALLY DISINTEGRATING TABLETS OF DROTAVERINE HYDROCHLORIDE USING SUBLIMATION TECHNIQUE

    Get PDF
    Objective: To formulate orally disintegrating taste masked tablets of drotaverine hydrochloride (HCl) by sublimation technique.Methods: Initially superdisintegrant was selected and its concentration was optimized by pre-compression and post-compression parametric evaluation. Camphor and menthol were used as sublimating agents alone and in combination to mask the taste of drotaverine hydrochloride. Prepared tablets were evaluated for physicochemical evaluation, in vitro dissolution studies and fourier transformation-infrared spectroscopy, differential scanning calorimetry and X-ray diffractometry studies.Results: The optimised formulation DCM2 prepared with a mixture of camphor and menthol was characterised by fourier transformation-infrared spectroscopy, differential scanning calorimetry and X-ray diffractometry studies and found no incompatibility and no major shifts were noticed.Conclusion: The results demonstrated that the prepared drotaverine HCl orally disintegrating tablets showed better taste masking. The present sublimation technique can be effectively used for taste masking and also for orally disintegrating tablets

    DEVELOPMENT, FORMULATION AND EVALUATION OF A BILAYER GASTRIC RETENTIVE FLOATING TABLETS OF RANITIDINE HCL AND CLARITHROMYCIN USING NATURAL POLYMERS

    Get PDF
    Objective: Bilayer gastric retentive floating tablets (BGRFT) with ranitidine HCl and clarithromycin using natural gums have been developed to prolong the gastric residence time and increase drug bioavailability. Literature review revealed no published studies on the present study.Methods: Immediate release (IR) layer prepared by using different diluents and super disintegrants like sodium starch glycolate, crosscarmellose sodium and crospovidone. Controlled released (CR) layer prepared by using neem gum, damar gum and copal gum. Prepared tablets were evaluated for in vivo and in vitro buoyancy, in vitro dissolution studies and fourier transformation-infrared spectroscopy (FTIR). Drug release was evaluated with zero and first order for release kinetics, Higuchi, Hixson-Crowell erosion models for release mechanism.Results: Prepared IR layer followed first order rate kinetics and CR layer followed zero order rate kinetics with non-Fickian diffusion mechanism. BGRFT also showed similar results as that of the individual layer. Optimized formulations were characterized by FTIR studies and found no interactions between drug and polymer.Conclusion: The results demonstrate the feasibility of the model in the development of BGRFT. BGRFT enhanced the drug release and finally the bioavailability of clarithromycin when compared with commercial tablet (Biomycin 250). The present study could establish the suitability of neem gum as CR polymer in the design of BGRFT

    PREPARATION AND EVALUATION OF DROTAVERINE HCL ORAL DISINTEGRATING TABLETS USING SOLID MIXTURE TECHNIQUE

    No full text
    Objective: The objective of this study is to formulate orally disintegrating taste masked tablets of drotaverine HCl using solid mixture technique.Methods: Taste masked drug-polymer solid mixtures of drotaverine HCl were prepared by using hydroxypropyl methylcellulose (HPMC) 3 cps and rxcipient® FM1000/calcium silicate (rxcipient) as carriers employing kneading method using varying drug-polymer ratios of 1:1, 1:5, 1:7.5, and 1:9. Prepared drug-polymer mixtures evaluated for taste masking, and the ratio of drug-polymer is optimized. The granules and tablets prepared with optimized drug-polymer ratio were evaluated for pre- and post-compression parameters, in vitro dissolution studies, Fourier-transformation infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and X-ray diffractometry (XRD) studies.Results: The drug:polymer ratios 1:7.5 with rxcipient and 1:9 with HPMC were optimized based on taste evaluation. The pre-compression results showed that all the formulae have good flow properties. The post-compression evaluations showed that all the formulae met the specifications of orally disintegrating tablets. From all the prepared taste masked drotaverine HCl tablets, R10 formulation consisting of 4% croscarmellose sodium and H9 formulation consisting of 3% croscarmellose sodium, 3% sodium starch glycolate, and 2% microcrystalline cellulose shown more than 99% drug release in 60 min, and both the formulations showed better taste masking and were meting oral disintegrating tablet (ODT) parameters. The optimized formulation was characterized by FTIR, DSC, and XRD studies and found no incompatibility.Conclusion: The results demonstrated that the prepared drotaverine HCl ODT showed better taste masking and meeting the parameters of ODT formulations R10 and H9. The present solid mixture technique can be effectively used for taste masking

    APPLICATION OF SYNTHETIC AND NATURAL POLYMERS IN PREPARATION AND CHARACTERIZATION OF DOMPERIDONE FAST-DISSOLVING FILMS

    No full text
    Objective: The present research work is mainly focused on solubility enhancement of domperidone which is a biopharmaceutical classification system Class II drug using natural and synthetic polymers. Methods: The solubility was enhanced by the kneading method with the drug: polymer (1:0.5, 1:0.75, and 1:1) using β-cyclodextrin. The fast dissolving films (FDFs) of domperidone were prepared by incorporating the solid dispersion (SD) SDK3 by solvent casting method using hydroxypropyl methylcellulose K15 M (HPMC) and gellan gum in various concentrations for preparing FDFs. Various pre- and post-compression parameters, drug and excipients compatibility studies were evaluated by Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), and X-ray diffraction analysis (XRD). Results: The maximum drug release of 98.86 % was achieved within 30 min for 1:1 ratio of solid dispersion using β-cyclodextrin, was optimized and taken for further development of FDFs. From the in vitro drug release studies films prepared with 10% w/w of HPMC K 15 (FH5) and 10% w/w of gellan gum (FG5) showed enhanced dissolution rate compared to other formulations. The formulation FHG with combination of polymers, namely, HPMC K 15 and gellan gum in 1:1 ratio showed drug release of 97.22% within 15 min only when compared with the optimized formulations. FTIR and DSC studies revealed that there were no interactions between drug and excipients. XRD studies revealed slight conversion of crystalline form to amorphous. The optimized formulation FHG found to be stable under accelerated stability studies. Conclusions: The polymers in combination are a potential candidate for use in the formulation of FDF
    corecore