3 research outputs found

    The Correlation between Electroencephalography Amplitude and Interictal Abnormalities : Audit study

    Get PDF
    Objectives: The aim of this study was to establish the relationship between background amplitude and interictal abnormalities in routine electroencephalography (EEG). Methods: This retrospective audit was conducted between July 2006 and December 2009 at the Department of Clinical Physiology at Sultan Qaboos University Hospital (SQUH) in Muscat, Oman. A total of 1,718 electroencephalograms (EEGs) were reviewed. All EEGs were from patients who had been referred due to epilepsy, syncope or headaches. EEGs were divided into four groups based on their amplitude: group one ≤20 μV; group two 21–35 μV; group three 36–50 μV, and group four >50 μV. Interictal abnormalities were defined as epileptiform discharges with or without associated slow waves. Abnormalities were identified during periods of resting, hyperventilation and photic stimulation in each group. Results: The mean age ± standard deviation of the patients was 27 ± 12.5 years. Of the 1,718 EEGs, 542 (31.5%) were abnormal. Interictal abnormalities increased with amplitude in all four categories and demonstrated a significant association (P <0.05). A total of 56 EEGs (3.3%) had amplitudes that were ≤20 μV and none of these showed interictal epileptiform abnormalities. Conclusion: EEG amplitude is an important factor in determining the presence of interictal epileptiform abnormalities in routine EEGs. This should be taken into account when investigating patients for epilepsy. A strong argument is made for considering long-term EEG monitoring in order to identify unexplained seizures which may be secondary to epilepsy. It is recommended that all tertiary institutions provide EEG telemetry services

    Snoring-Induced Nerve Lesions in the Upper Airway

    Get PDF
    The prevalence of habitual snoring is extremely high in the general population, and is reported to be roughly 40% in men and 20% in women. The low-frequency vibrations of snoring may cause physical trauma and, more specifically, peripheral nerve injuries, just as jobs which require workers to use vibrating tools over the course of many years result in local nerve lesions in the hands. Histopathological analysis of upper airway (UA) muscles have shown strong evidence of a varying severity of neurological lesions in groups of snoring patients. Neurophysiological assessment shows evidence of active and chronic denervation and re-innervation in the palatopharyngeal muscles of obstructive sleep apnoea (OSA) patients. Neurogenic lesions of UA muscles induced by vibration trauma impair the reflex dilation abilities of the UA, leading to an increase in the possibility of UA collapse. The neurological factors which are partly responsible for the progressive nature of OSAS warrant the necessity of early assessment in habitual snorers

    The Correlation between Electroencephalography Amplitude and Interictal Abnormalities: Audit study

    No full text
    Objectives: The aim of this study was to establish the relationship between background amplitude and interictal abnormalities in routine electroencephalography (EEG). Methods: This retrospective audit was conducted between July 2006 and December 2009 at the Department of Clinical Physiology at Sultan Qaboos University Hospital (SQUH) in Muscat, Oman. A total of 1,718 electroencephalograms (EEGs) were reviewed. All EEGs were from patients who had been referred due to epilepsy, syncope or headaches. EEGs were divided into four groups based on their amplitude: group one ≤20 μV; group two 21–35 μV; group three 36–50 μV, and group four >50 μV. Interictal abnormalities were defined as epileptiform discharges with or without associated slow waves. Abnormalities were identified during periods of resting, hyperventilation and photic stimulation in each group. Results: The mean age ± standard deviation of the patients was 27 ± 12.5 years. Of the 1,718 EEGs, 542 (31.5%) were abnormal. Interictal abnormalities increased with amplitude in all four categories and demonstrated a significant association (P <0.05). A total of 56 EEGs (3.3%) had amplitudes that were ≤20 μV and none of these showed interictal epileptiform abnormalities. Conclusion: EEG amplitude is an important factor in determining the presence of interictal epileptiform abnormalities in routine EEGs. This should be taken into account when investigating patients for epilepsy. A strong argument is made for considering long-term EEG monitoring in order to identify unexplained seizures which may be secondary to epilepsy. It is recommended that all tertiary institutions provide EEG telemetry services
    corecore