45 research outputs found
Triple Band Parasitic Array Antenna for C-X-Ku-Band Application Using Out-of-Phase Coupling Approach
Improving Performance of WSN Based On Hybrid Range Based Approach
Improving the performance of WSN supported hybrid range based approach. WSN is self-possessed minimization error of nodes prepared with limited resources, limited memory and computational abilities. WSNs reliably work in unidentified hubs and numerous situations, it's difficult to trade sensor hubs after deployment, and therefore a fundamental objective is to optimize the sensor nodes' lifetime. A WSN may be a set of a large number of resource-constrained sensor nodes which have abilities for information detection, processing, and short-range radio communication, Analysis localization error minimization based several applications of wireless sensor networks (WSN) need data regarding the geographical location of each detector node. Self-organization and localization capabilities are one in every of the foremost necessary needs in detector networks. It provides a summary of centralized distance-based algorithms for estimating the positions of nodes during very sensing nodes. Secure localization of unknown nodes during a very wireless detector network (WSN) may be a vital analysis subject wireless sensor networks (WSN), a component of enveloping computing, are presently getting used on a large scale to look at period environmental standing, Be that as it may, these sensors work underneath extraordinary vitality imperatives and are planned by remembering an application. Proposed approaches are sensing node location and challenging task, involve assessing sort of various parameters needed by the target application. In study realize drawback not sense positioning of nodes .but proposed approach formula recognizes the optimal location of nodes supported minimize error and best answer in WSN. Localization algorithms mentioned with their benefits and disadvantages. Lastly, a comparative study of localization algorithms supported the performance in WSN. This was often done primarily to offer a summary of the proposed approach known today for reliable data and minimizing the energy consumption in wireless sensor networks
Accelerator development in India for ADS programme
At BARC, development of a Low Energy High Intensity Proton Accelerator (LEHIPA), as front-end injector of the 1 GeV accelerator for the ADS programme, has been initiated. The major components of LEHIPA (20 MeV, 30 mA) are a 50 keV ECR ion source, a 3 MeV Radio Frequency Quadrupole (RFQ) and a 20 meV drift tube linac (DTL). The Low Energy Beam Transport (LEBT) and Medium Energy Beam Transport (MEBT) lines match the beam from the ion source to RFQ and from RFQ to DTL respectively. Design of these systems has been completed and fabrication of their prototypes has started. Physics studies of the 20-1000 MeV part of the Linac are also in progress. In this paper, the present status of this project is presented