2 research outputs found

    Contrasting Effects of Laser Shock Peening on Austenite and Martensite Phase Distribution and Hardness of Nitinol

    No full text
    Laser shock peening of cold rolled Nitinol was carried out at high power density (7 and 9 GW/cm2) and high overlap ratio (90%). Tensile surface residual stresses were generated in the peened material. An enhancement in surface microhardness from 351 for unpeened material to 375 and 394 VHN for the 7 and 9 GW/cm2 samples, respectively, was also observed. However, at a depth of 50 μm, the hardness of the peened material was lower than that of the as-received material. These contrasting observations were attributed to the change in the austenitic phase fraction brought about by laser interactions

    Contrasting Effects of Laser Shock Peening on Austenite and Martensite Phase Distribution and Hardness of Nitinol

    No full text
    Laser shock peening of cold rolled Nitinol was carried out at high power density (7 and 9 GW/cm2) and high overlap ratio (90%). Tensile surface residual stresses were generated in the peened material. An enhancement in surface microhardness from 351 for unpeened material to 375 and 394 VHN for the 7 and 9 GW/cm2 samples, respectively, was also observed. However, at a depth of 50 μm, the hardness of the peened material was lower than that of the as-received material. These contrasting observations were attributed to the change in the austenitic phase fraction brought about by laser interactions
    corecore