21 research outputs found

    Self-induced topological transition in phononic crystals by nonlinearity management

    Full text link
    A new design paradigm of topology has recently emerged to manipulate the flow of phonons. At its heart lies a topological transition to a nontrivial state with exotic properties. This framework has been limited to linear lattice dynamics so far. Here we show a topological transition in a nonlinear regime and its implication in emerging nonlinear solutions. We employ nonlinearity management such that the system consists of masses connected with two types of nonlinear springs, "stiffening" and "softening" types, alternating along the length. We show, analytically and numerically, that the lattice makes a topological transition simply by changing the excitation amplitude and invoking nonlinear dynamics. Consequently, we witness the emergence of a new family of finite-frequency edge modes, not observed in linear phononic systems. We also report the existence of kink solitons at the topological transition point. These correspond to heteroclinic orbits that form a closed curve in the phase portrait separating the two topologically-distinct regimes. These findings suggest that nonlinearity can be used as a strategic tuning knob to alter topological characteristics of phononic crystals. These also provide fresh perspectives towards understanding a new family of nonlinear solutions in light of topology.Comment: 14 pages, 8 figure

    Dirac Solitons and Topological Edge States in the β\beta-Fermi-Pasta-Ulam-Tsingou dimer lattice

    Full text link
    We consider a dimer lattice of the Fermi-Pasta-Ulam-Tsingou (FPUT) type, where alternating linear couplings have a controllably small difference, and the cubic nonlinearity (β\beta-FPUT) is the same for all interaction pairs. We use a weakly nonlinear formal reduction within the lattice bandgap to obtain a continuum, nonlinear Dirac-type system. We derive the Dirac soliton profiles and the model's conservation laws analytically. We then examine the cases of the semi-infinite and the finite domains and illustrate how the soliton solutions of the bulk problem can be ``glued'' to the boundaries for different types of boundary conditions. We thus explain the existence of various kinds of nonlinear edge states in the system, of which only one leads to the standard topological edge states observed in the linear limit. We finally examine the stability of bulk and edge states and verify them through direct numerical simulations, in which we observe a solitary wave setting into motion due to the instability.Comment: 13 pages, 9 figures (Multiscale analysis is updated
    corecore