5 research outputs found

    Ethanolic extract of Amaranthus paniculatus Linn. ameliorates diabetes-associated complications in alloxan-induced diabetic rats

    No full text
    Background: The aim of this study was to evaluate the hypoglycemic, hypolipidemic, and anti-inflammatory potentials of ethanolic extract of leaves of Amaranthus paniculatus linn. (EEAP) on alloxan-induced diabetic rats scientifically. Hyperglycemia induces the generation of free radicals which can affect antioxidant defenses, thus leading to the disruption of beta cellular functions, oxidative damage to membranes, leading to the release of C-reactive protein and altered lipid metabolism. Methods: Diabetes was induced by intraperitoneal injection of ice-cold aqueous alloxan monohydrate at the dose of 150 mg/kg body weight. Results: After a daily single oral administration of the EEAP for 28 days starting from the study protocol, the blood glucose, serum glutamic pyruvic transaminase (SGPT), serum glutamic oxaloacetic transaminase (SGOT), total cholesterol (TC), triglyceride (TG), and C-reactive protein (CRP) levels were assessed. The results obtained from the study administration of daily dose of EEAP significantly reduced the blood glucose, SGPT, SGOT, TC, TG, and CRP in a dose-dependent manner. The results obtained were comparable to those of glibenclamide. The serum levels of TC, TG, and CRP were significantly altered in the diabetic control group, but it was significantly decreased in the extract-treated group and standard glibenclamide-treated group, except at a dose of 100 mg/kg where there was no significant effect on the TG level. The finding obtained suggests that EEAP acts through molecular level, modifying the altered pathways in diabetes and associated complications. Conclusion: The results obtained suggest that EEAP possesses a potential for the management of diabetes and associated complications in experimentally-induced diabetic rats

    DEVELOPMENT AND VALIDATION OF RP-HPLC METHOD FOR SIMULTANEOUS ESTIMATION OF PIPERAQUINE PHOSPHATE AND DIHYDROARTEMISININ IN BULK

    No full text
    High Performance Liquid Chromatography (HPLC) methods are described for determination of drugs as a single or in combination in bulk or pharmaceutical formulation. The objective of the present study was to develop and validate novel, accurate, sensitive, precise, rapid and isocratic reverse Phase HPLC (RP-HPLC) method for the simultaneous determination of Piperaquine phosphate and Dihydroartemisinin in bulk because no method is available for simultaneous estimation of these drugs. The separation was achieved on GRACESMART RP-18 column (250 mm × 4.6 mm, 5μm) with mobile phase consisting of 10 mM Ammonium acetate (pH4.6, adjusted with Acetic acid): Methanol (15:85 % v/v) at a flow rate of 1.2 ml/min. UV detection at 220 nm. PQP and DHA obeyed linearity in the concentration range of 5-25 μg/ml (r2 = 0.9993) and 5-25 μg/ml (r2 = 0.9987) respectively. The asymmetric factors were found to be 1.17 for PQP and 1.2 for DHA. The developed method was validated as per ICH guidelines fulfill all the acceptance criteria and can be use for routine analysis
    corecore