92 research outputs found

    Fungal biofilm resistance

    Get PDF
    Fungal biofilm infections have become increasingly recognised as a significant clinical problem. One of the major reasons behind this is the impact that these have upon treatment, as antifungal therapy often fails and surgical intervention is required. This places a large financial burden on health care providers. This paper aims to illustrate the importance of fungal biofilms, particularly Candida albicans, and discusses some of the key fungal biofilm resistance mechanisms that include, extracellular matrix (ECM), efflux pump activity, persisters, cell density, overexpression of drug targets, stress responses, and the general physiology of the cell. The paper demonstrates the multifaceted nature of fungal biofilm resistance, which encompasses some of the newest data and ideas in the field

    Prior in vitro exposure to voriconazole confers resistance to amphotericin B in aspergillus fumigatus biofilms

    Get PDF
    Triazoles are the mainstay of treatment for aspergillosis, although resistance to these antifungal agents may be associated with treatment failure. Refractory infections often necessitate a switch to other antifungal agents, including amphotericin B (AmB), although these infections may not resolve. The aim of this study was to investigate the effect of prior azole exposure on AmB sensitivity in Aspergillus fumigatus biofilms. It was hypothesised that sequential antifungal therapy has the potential to impact adaptive resistance mechanisms. Antifungal sensitivity was determined for each isolate against AmB ± voriconazole (VRZ) exposure by a broth microdilution method and an XTT metabolic assay. To analyse the role of extracellular DNA (eDNA) and Hsp90 activation, sensitivity to AmB ± DNA-digesting enzyme (DNase) or Hsp90 inhibitor [geldanamycin (GDA)] was also tested. Finally, scanning electron microscopy was performed to assess phenotypic changes. The in vitro data revealed that A. fumigatus sensitivity to AmB was decreased when it was tested in combination with VRZ. In addition, a two- to four-fold decreased sensitivity to AmB was recorded against VRZ-exposed germlings compared with controls. It was also shown that depletion of eDNA by DNase treatment enhanced AmB activity against VRZ-exposed cells by eight-fold, which visually could be explained by destabilisation of the biofilm when examined microscopically. Pharmacological inhibition of Hsp90 by GDA significantly improved biofilm susceptibility to AmB by four- to eight-fold. In conclusion, A. fumigatus pre-exposure to VRZ concomitantly induces eDNA release and activates the stress response, which collectively confers AmB resistance in vitro

    Adaptive resistance mechanisms of Aspergillus fumigatus biofilms

    Get PDF
    Biofilm formation is one of several significant virulence factors associated with life threatening pulmonary infections in immunocompromised individuals caused by Aspergillus fumigatus. Previous studies have demonstrated phase dependant antifungal activity against A. fumigatus biofilms. Antifungal resistance associated with fungal biofilms is a complex multifactorial phenomenon, and it remains unclear specifically how this manifests itself in A. fumigatus. This study therefore aimed to investigate adaptive resistance mechanisms in A. fumigatus biofilms. Different phases of A. fumigatus biofilms were grown for 8, 12, 24 and 48h in polystyrene plates in RPMI media. Functional efflux pump activity was subsequently assessed using an Ala-Nap fluorescent uptake assay. Extracellular material was extracted from each phase and the level of extracellular DNA (eDNA) was quantifiedusing a microplate fluorescence assay. The minimum inhibitory concentrations (MIC) of different classes of antifungals were assessed in the presence and absence of different inhibitors using a checkerboard assay, or with a fixed concentration, by the broth microdilution method to assess synergism, antagonism, or otherwise. The presence of eDNA and phenotypic changes in biofilm caused by antifungal agents and inhibitors were assessed by confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM) techniques. The resultant biofilm biomass for different experiments was evaluated using a crystal violet assay. SYBR green qRT-PCR was used to assess the expression of different genes implicated in biofilm resistance (AfuMDR 1-4, ChiA-E, HSP90 and Fks1) over the period of multicellular development, using a diffusion chamber in a murine model and a Galleria mellonella infection model. The results from this study demonstrated phase dependant expression of efflux pumps in A. fumigatus biofilm populations, which actively contributes to azole resistance. Moreover, voriconazole treatment induced efflux pump expression in both in vitro and in vivo models.These data suggest that A. fumigatus efflux pump proteins, which evolved to become integral to their natural physiological function, have inadvertently induced resistance to azole drugs, albeit in the early phases of biofilm development. Assessment of A. fumigatus biofilm extracellular matrix (ECM), associated with maturing biofilms, showed that eDNA is an important architectural component of the biofilm, helping to maintain its stability. The antifungal sensitivity of different phases of A. fumigatus growth decreased significantly in the presence of DNase, indicating that decreased susceptibility to antifungals in the A. fumigatus is mediated in part by eDNA.Its release was shown to correlate withchitinase activity, a marker of autolysis, suggestive that autolysis was associated with eDNA release. It was hypothesised that heat shock protein 90 (HSP90) was involved in this autolytic pathway. Therefore, when HSP90 was pharmacologically inhibited this led to a decrease in matrix eDNA level, providing a compelling mechanism through which HSP90 might regulate biofilm antifungal resistance. To test whether these mechanisms of adaptive resistance had any bearing clinically, a G. mellonella model was developed. It was shown that each of the key genes were expressed during infection, both in control and antifungal treated larvae. This validates the potential use of this insect model for resistance and virulence studies. Overall, this study establishes several novel adaptive resistance mechanisms regulating biofilm drug resistance in A. fumigatus biofilms. Moreover, it highlights the potential to target these mechanisms as a therapeutic strategy for managing and improving clinical outcomes in these hard-to-treat infections

    New strategic insights into managing fungal biofilms

    Get PDF
    Fungal infections have dramatically increased in the last decades in parallel with an increase of populations with impaired immunity, resulting from medical conditions such as cancer, transplantation or other chronic diseases. Such opportunistic infections result from a complex relationship between fungi and host, and can range from self-limiting to chronic or life-threatening infections. Modern medicine, characterized by a wide use of biomedical devices, offers new niches for fungi to colonize and form biofilm communities. The capability of fungi to form biofilms is well documented and associated with increased drug tolerance and resistance. In addition, biofilm formation facilitates persistence in the host promoting a persistent inflammatory condition. With a limited availability of antifungals within our arsenal, new therapeutic approaches able to address both host and pathogenic factors that promote fungal disease progression, i.e. chronic inflammation and biofilm-formation, could represent an advantage in the clinical setting. In this paper we discuss the antifungal properties of Myriocin, Fulvic Acid and Acetylcholine in light of their already known anti-inflammatory activity and as candidate dual action therapeutics to treat opportunistic fungal infections

    The application of phenotypic microarray analysis to anti-fungal drug development

    Get PDF
    Candida albicans metabolic activity in the presence and absence of acetylcholine was measured using phenotypic microarray analysis. Acetylcholine inhibited C. albicans biofilm formation by slowing metabolism independent of biofilm forming capabilities. Phenotypic microarray analysis can therefore be used for screening compound libraries for novel anti-fungal drugs and measuring antifungal resistance

    Aspergillus fumigatus enhances elastase production in pseudomonas aeruginosaco-cultures

    Get PDF
    In the cystic fibrosis (CF) lung the presence of bacteria and fungi in the airways promotes an inflammatory response causing progressive lung damage, ultimately leading to high rates of morbidity and mortality. We hypothesized that polymicrobial interactions play an important role in promoting airway pathogenesis. We therefore examined the interplay between the most commonly isolated bacterial CF pathogen, Pseudomonas aeruginosa, and the most prevalent filamentous fungi, Aspergillus fumigatus, to test this. Co-culture experiments showed that in the presence of A. fumigatus the production of P. aeruginosa elastase was enhanced. This was confirmed by the presence of zones of clearance on Elastin-Congo Red (ECR) agar, which was identified as elastase by mass spectrometry. When P. aeruginosa were grown in a co-culture model with mature A. fumigatus biofilms, 60% of isolates produced significantly more elastase in the presence of the filamentous fungi than in its absence (P < .05). The expression of lasB also increased when P. aeruginosa isolates PA01 and PA14 were grown in co-culture with A. fumigatus. Supernatants from co-culture experiments were also significantly toxic to a human lung epithelial cell line (19–38% cell cytotoxicity) in comparison to supernatants from P. aeruginosa only cultures (P < .0001). Here we report that P. aeruginosa cytotoxic elastase is enhanced in the presence of the filamentous fungi A. fumigatus, suggesting that this may have a role to play in the damaging pathology associated with the lung tissue in this disease. This indicates that patients who have a co-colonisation with these two organisms may have a poorer prognosis

    Gaining insights from Candida biofilm heterogeneity: one size does not fit all

    Get PDF
    Despite their clinical significance and substantial human health burden, fungal infections remain relatively under-appreciated. The widespread overuse of antibiotics and the increasing requirement for indwelling medical devices provides an opportunistic potential for the overgrowth and colonization of pathogenic Candida species on both biological and inert substrates. Indeed, it is now widely recognized that biofilms are a highly important part of their virulence repertoire. Candida albicans is regarded as the primary fungal biofilm forming species, yet there is also increasing interest and growing body of evidence for non-Candida albicans species (NCAS) biofilms, and interkingdom biofilm interactions. C. albicans biofilms are heterogeneous structures by definition, existing as three-dimensional populations of yeast, pseudo-hyphae, and hyphae, embedded within a self-produced extracellular matrix. Classical molecular approaches, driven by extensive studies of laboratory strains and mutants, have enhanced our knowledge and understanding of how these complex communities develop, thrive, and cause host-mediated damage. Yet our clinical observations tell a different story, with differential patient responses potentially due to inherent biological heterogeneity from specific clinical isolates associated with their infections. This review explores some of the recent advances made in an attempt to explore the importance of working with clinical isolates, and what this has taught us

    Biofilm-stimulated epithelium modulates the inflammatory responses in co-cultured immune cells

    Get PDF
    The gingival epithelium is a physical and immunological barrier to the microbiota of the oral cavity, which interact through soluble mediators with the immune cells that patrol the tissue at the gingival epithelium. We sought to develop a three-dimensional gingivae-biofilm interface model using a commercially available gingival epithelium to study the tissue inflammatory response to oral biofilms associated with “health”, “gingivitis” and “periodontitis”. These biofilms were developed by sequential addition of microorganisms to mimic the formation of supra- and sub-gingival plaque in vivo. Secondly, to mimic the interactions between gingival epithelium and immune cells in vivo, we integrated peripheral blood mononuclear cells and CD14+ monocytes into our three-dimensional model and were able to assess the inflammatory response in the immune cells cultured with and without gingival epithelium. We describe a differential inflammatory response in immune cells cultured with epithelial tissue, and more so following incubation with epithelium stimulated by “gingivitis-associated” biofilm. These results suggest that gingival epithelium-derived soluble mediators may control the inflammatory status of immune cells in vitro, and therefore targeting of the epithelial response may offer novel therapies. This multi-cellular interface model, both of microbial and host origin, offers a robust in vitro platform to investigate host-pathogens at the epithelial surface

    Evaluating Streptococcus mutans strain dependent characteristics in a polymicrobial biofilm community

    Get PDF
    Aim: The purpose of this study was to investigate strain dependent differences of the cariogenic biofilm forming Streptococcus mutans within both simple and complex communities. Methods: A mono-species containing representative S. mutans clinical isolates (caries and non-caries), and a multispecies in vitro caries biofilm model containing Lactobacillus casei, Veillonella dispar, Fusobacterium nucleatum and Actinomyces naeslundii, and either of two representative S. mutans clinical isolates (caries and non-caries), was developed as a comparison model. Compositional analysis of total and live bacteria within biofilms, and transcriptional analysis of biofilm associated virulence factors were evaluated by live/dead PCR and quantitative PCR, respectively. Scanning electron microscopy (SEM) was used to analyze the architecture of biofilm. One-way analysis of variance and t-tests were used to investigate significant differences between independent groups of data. Results: Within a mono-species biofilm, different S. mutans strains responded similarly to one another during biofilm formation in different carbohydrate sources, with sucrose showing the highest levels of biofilm biomass and galactose showing the lowest. Within the polymicrobial biofilm system, compositional analysis of the bacteria within the biofilm showed that S. mutans derived from a caries-free patient was preferentially composed of both total and viable L. casei, whereas S. mutans derived from a caries patient was dominated by both total and viable S. mutans (p < 0.001). Normalized gene expression analysis of srtA, gtfB, ftf, spaP, gbpB, and luxS, showed a general upregulation within the S. mutans dominant biofilm. Conclusion: We were able to demonstrate that individual strains derived from different patients exhibited altered biofilm characteristics, which were not obvious within a simple mono-species biofilm model. Influencing the environmental conditions changed the composition and functionality S. mutans within the polymicrobial biofilm. The biofilm model described herein provides a novel and reproducible method of assessing the impact on the biofilm microbiome upon different environmental influences

    The anti-adhesive effect of curcumin on Candida albicans biofilms on denture materials

    Get PDF
    The use of natural compounds as an alternative source of antimicrobials has become a necessity given the growing concern over global antimicrobial resistance. Polyphenols, found in various edible plants, offers one potential solution to this. We aimed to investigate the possibility of using curcumin within the context of oral health as a way of inhibiting and preventing the harmful development of Candida albicans biofilms. We undertook a series of adsorption experiments with varying concentrations of curcumin, showing that 50 ug/ml could prevent adhesion. This effect could be further synergised by the curcumin pretreatment of yeast cells to obtain significantly greater inhibition (>90, p<0.001). Investigation of the biological impact of curcumin showed that it preferentially affected immature morphological forms (yeast and germlings), and actively promoted aggregation of the cells. Transcriptional analyses showed that key adhesins were down-regulated (ALS1 and ALS3), whereas aggregation related genes (ALS5 and AAF1) were up-regulated. Collectively, these data demonstrated that curcumin elicits anti-adhesive effects and that induces transcription of genes integrally involved in the processes related to biofilm formation. Curcumin and associated polyphenols therefore have the capacity to be developed for use in oral healthcare to augment existing preventative strategies for candidal biofilms on the denture surface
    corecore