8,663 research outputs found

    Origin of translocation barriers for polyelectrolyte chains

    Full text link
    For single-file translocations of a charged macromolecule through a narrow pore, the crucial step of arrival of an end at the pore suffers from free energy barriers, arising from changes in intrachain electrostatic interaction, distribution of ionic clouds and solvent molecules, and conformational entropy of the chain. All contributing factors to the barrier in the initial stage of translocation are evaluated by using the self-consistent field theory for the polyelectrolyte and the coupled Poisson-Boltzmann description for ions, without radial symmetry. The barrier is found to be essentially entropic, due to conformational changes. For moderate and high salt concentrations, the barriers for the polyelectrolyte chain are quantitatively equivalent to that of uncharged self-avoiding walks. Electrostatic effects are shown to increase the free energy barriers, but only slightly. The degree of ionization, electrostatic interaction strength, decreasing salt concentration and the solvent quality all result in increases in the barrier.Comment: J.Chem. Phys. 131, 21 (2009) - to be appeare

    Correlation between structure and Rayleigh parameters in the lead-free piezoceramic (1-x)Ba(Ti0.88 Sn0.12)O3-x(Ba0.7Ca0.3)TiO3

    Full text link
    Composition dependent Rayleigh and structural analysis was carried out on the lead-free piezoceramics (1-x)(BaTi0.88Sn0.12)-x(Ba0.7Ca0.3)TiO3 at room temperature. The system exhibits tetragonal (P4mm) structure for x > 0.21, rhombohedral (R3m) for x < 0.13 and orthorhombic (Amm2) for 0.13<x<0.21. Rayleigh analysis suggests that the irreversible contribution to the dielectric response is enhanced in the single phase orthorhombic compositions in the vicinity of the R3m-Amm2 and Amm2-P4mm phase boundaries, and not in compositions exhibiting phase coexistences (x = 0.12 and 0.22). We also found a correspondence between the irreversible Rayleigh parameter and the coercive field in this system.Comment: 18 pages 5 figure

    Duality and scale invariant magnetic fields from bouncing universes

    Get PDF
    Recently, we had numerically shown that, for a non-minimal coupling that is a simple power of the scale factor, scale invariant magnetic fields arise in a class of bouncing universes. In this work, we {\it analytically} evaluate the spectrum of magnetic and electric fields generated in a sub-class of such models. We illustrate that, for cosmological scales which have wavenumbers much smaller than the wavenumber associated with the bounce, the shape of the spectrum is preserved across the bounce. Using the analytic solutions obtained, we also illustrate that the problem of backreaction is severe at the bounce. Finally, we show that the power spectrum of the magnetic field remains invariant under a two parameter family of transformations of the non-minimal coupling function.Comment: v1: 17 pages, 5 figures; v2: 14 pages, 5 figures, bouncing model details and discussion extended, references added, to appear in Phys. Rev.

    Effective chemical potential in spontaneous baryogenesis

    Full text link
    Models of spontaneous baryogenesis have an interaction term μθjBμ\partial_\mu\theta j^\mu_B in the Lagrangian, where jBμj^\mu_B is the baryonic current and θ\theta can be a pseudo-Nambu-Goldstone boson. Since the time component of this term, θ˙jB0\dot{\theta} j^0_B, equals θ˙nB\dot{\theta} n_B for a spatially homogeneous current, it is usually argued that this term implies a splitting in the energy of baryons and antibaryons thereby providing an effective chemical potential for baryon number. In thermal equilibrium, one {then obtains} nBθ˙T2n_B \sim \dot{\theta} T^2. We however argue that a term of this form in the Lagrangian does not contribute to the single particle energies of baryons and antibaryons. We show this for both fermionic and scalar baryons. But, similar to some recent work, we find that despite the above result the baryon number density obtained from a Boltzmann equation analysis can be proportional to θ˙T2\dot{\theta} T^2. Our arguments are very different from that in the standard literature on spontaneous baryogenesis.Comment: 16 pages, matches with the published versio

    Elliptical flow and isospin effects in heavy-ion collisions at intermediate energies

    Full text link
    The elliptical flow of fragments is studied for different systems at incident energies between 50 and 1000 MeV/nucleon using the isospin-dependent quantum molecular dynamics (IQMD) model. Our findings reveal that elliptical flow shows a transition from positive (in-plane) to negative (out-of-plane) values in the midrapidity region at a certain incident energy known as the transition energy. This transition energy is found to depend on the model ingredients, size of the fragments, and composite mass of the reacting system as well as on the impact parameter of the reaction. A reasonable agreement is observed for the excitation function of elliptical flow between the data and our calculations. Interestingly, the transition energy is found to exhibit a power-law mass dependence.Comment: 16 pages, 8 figure
    corecore