7 research outputs found

    Hierarchical multi-agent reinforcement learning

    No full text
    Consider sending a team of robots to carry out reconnaissance of an indoor environment to check for intruders

    ABSTRACT Hierarchical Multi-Agent Reinforcement Learning

    No full text
    In this paper we investigate the use of hierarchical reinforcement learning to speed up the acquisition of cooperative multi-agent tasks. We extend the MAXQ framework to the multi-agent case. Each agent uses the same MAXQ hierarchy to decompose a task into sub-tasks. Learning is decentralized, with each agent learning three interrelated skills: how to perform subtasks, which order to do them in, and how to coordinate with other agents. Coordination skills among agents are learned by using joint actions at the highest level(s) of the hierarchy. The Q nodes at the highest level(s) of the hierarchy are configured to represent the joint task-action space among multiple agents. In this approach, each agent only knows what other agents are doing at the level of sub-tasks, and is unaware of lower level (primitive) actions. This hierarchical approach allows agents to learn coordination faster by sharing information at the level of sub-tasks, rather than attempting to learn coordination taking into account primitive joint state-action values. We apply this hierarchical multi-agent reinforcement learning algorithm to a complex AGV scheduling task and compare its performance and speed with other learning approaches, including flat multi-agent, single agent using MAXQ, selfish multiple agents using MAXQ (where each agent acts independently without communicating with the other agents), as well as several well-known AGV heuristics like ”first come first serve”, ”highest queue first ” and ”nearest station first”. We also compare the tradeoffs in learning speed vs. performance of modeling joint action values at multiple levels in the MAXQ hierarchy. 1

    Hierarchical multi-agent reinforcement learning

    No full text
    Abstract. In this paper, we investigate the use of hierarchical reinforcement learning (HRL) to speed up the acquisition of cooperative multi-agent tasks. We introduce a hierarchical multi-agent reinforcement learning (RL) framework, and propose a hierarchical multi-agent RL algorithm called Cooperative HRL. In this framework, agents are cooperative and homogeneous (use the same task decomposition). Learning is decentralized, with each agent learning three interrelated skills: how to perform each individual subtask, the order in which to carry them out, and how to coordinate with other agents. We define cooperative subtasks to be those subtasks in which coordination among agents significantly improves the performance of the overall task. Those levels of the hierarchy which include cooperative subtasks are called cooperation levels. A fundamental property of the proposed approach is that it allows agents to learn coordination faster by sharing information at the level of cooperative subtasks, rather than attempting to learn coordination at the level of primitive actions. We study the empirical performance of the Cooperative HRL algorithm using two testbeds: a simulated two-robot trash collection task, and
    corecore