15 research outputs found
Basin Effects in Strong Ground Motion: A Case Study from the 2015 Gorkha, Nepal Earthquake
The term "basin effects" refers to entrapment and reverberation of earthquake
waves in soft sedimentary deposits underlain by concave basement rock
structures. Basin effects can significantly affect the amplitude, frequency and
duration of strong ground motion, while the cone-like geometry of the basin
edges gives rise to large amplitude surface waves through seismic wave
diffraction and energy focusing, a well-known characteristic of basin effects.
In this research, we study the role of basin effects in the mainshock ground
motion data recorded at the Kathmandu basin, Nepal during the 2015 Mw7.8 Gorkha
earthquake sequence. We specifically try to understand the source of the
unusual low frequency reverberating pulse that appeared systematically across
the basin, and the unexpected depletion of the ground surface motions from high
frequency components, especially away from the basin edges. In order to do that
we study the response of a 2D cross section of Kathmandu basin subjected to
vertically propagating plane SV waves. Despite the scarcity of geotechnical
information and of strong ground motion recordings, we show that an idealized
plane-strain elastic model with a simplified layered velocity structure can
capture surprisingly well the low frequency components of the basin ground
response. We finally couple the 2D elastic simulation with a 1D nonlinear
analysis of the shallow basin sediments. The 1D nonlinear approximation shows
improved performance over a larger frequency range relative to the first order
approximation of a 2D elastic layered basin response.Comment: Geotechnical Earthquake Engineering and Soil Dynamics V, Austin,
Texas (2018
Slip pulse and resonance of the Kathmandu basin during the 2015 Gorkha earthquake, Nepal.
This is the author accepted manuscript. The final version is available from AAAS via http://dx.doi.org/10.1126/science.aac6383Detailed geodetic imaging of earthquake ruptures enhances our understanding of earthquake physics and associated ground shaking. The 25 April 2015 moment magnitude 7.8 earthquake in Gorkha, Nepal was the first large continental megathrust rupture to have occurred beneath a high-rate (5-hertz) Global Positioning System (GPS) network. We used GPS and interferometric synthetic aperture radar data to model the earthquake rupture as a slip pulse ~20 kilometers in width, ~6 seconds in duration, and with a peak sliding velocity of 1.1 meters per second, which propagated toward the Kathmandu basin at ~3.3 kilometers per second over ~140 kilometers. The smooth slip onset, indicating a large (~5-meter) slip-weakening distance, caused moderate ground shaking at high frequencies (>1 hertz; peak ground acceleration, ~16% of Earth's gravity) and minimized damage to vernacular dwellings. Whole-basin resonance at a period of 4 to 5 seconds caused the collapse of tall structures, including cultural artifacts.The Nepal Geodetic Array was funded by internal funding to JPA from
Caltech and DASE and by the Gordon and Betty Moore Foundation, through Grant GBMF 423.01 to the Caltech Tectonics Observatory and was maintained thanks to NSF Grant EAR 13-5136. Andrew Miner and the PAcific Northwest Geodetic Array (PANGA) at Central Washington University are thanked for technical assistance with the construction and operation of the Tribhuvan University-CWU network. Additional funding for the TU-CWU network came from United Nations Development Programme and Nepal Academy for Science and Technology. The high rate data were recovered thanks to a rapid intervention funded by NASA (US) and the Department of Foreign International Development (UK). We thank Trimble Navigation Ltd and the Vaidya family for supporting the rapid response as well. The accelerometer record at KATNP was provided by USGS. Research at UC Berkeley was funded by the Gordon and Betty Moore Foundation through grant GBMF 3024. A portion of this work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. The GPS data were processed by ARIA (JPL) and the Scripps Orbit and Permanent Array Center.
The effort at the Scripps Institution of Oceanography was funded by NASA grants NNX14AQ53G and NNX14AT33G. ALOS-2 data were provided under JAXA (Japan) PI Investigations 1148 and 1413. JPA thanks the Royal Society for support. We thank Susan Hough, Doug Given, Irving Flores and Jim Luetgert for contribution to the installation of this station
Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake
Large earthquakes are thought to release strain on previously locked faults. However, the details of how earthquakes are initiated, grow and terminate in relation to pre-seismically locked and creeping patches is unclear ^1-4. The 2015 Mw 7.8 Gorkha, Nepal earthquake occurred close to Kathmandu in a region where the prior pattern of fault locking is well documented ^5. Here we analyze this event using seismological records measured at teleseismic distances and Synthetic Aperture Radar imagery. We show that the earthquake originated northwest of Kathmandu within a cluster of background seismicity that fringes the bottom of the locked portion of the Main Himalayan Thrust fault (MHT). The rupture propagated eastwards for about 140 km, unzipping the lower edge of the locked portion of the fault. High-frequency seismic waves radiated continuously as the slip pulse propagated at about 2.8 km s-1 along this zone of presumably high and heterogeneous pre-¬seismic stress at the seismic-aseismic transition. Eastward unzipping of the fault resumed during the Mw 7.3 aftershock on May 12. The transfer of stress to neighbouring regions during the Gorkha earthquake should facilitate future rupture of the areas of the MHT adjacent and up-dip of the Gorkha earthquake rupture.This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/ngeo251
Novel phages of healthy skin metaviromes from South Africa
Recent skin metagenomic studies have investigated the harbored viral diversity and its possible
influence on healthy skin microbial populations, and tried to establish global patterns of skin-phage
evolution. However, the detail associated with the phages that potentially play a role in skin health
has not been investigated. While skin metagenome and -metavirome studies have indicated that the
skin virome is highly site specific and shows marked interpersonal variation, they have not assessed
the presence/absence of individual phages. Here, we took a semi-culture independent approach
(metaviromic) to better understand the composition of phage communities on skin from South African
study participants. Our data set adds over 130 new phage species of the skin to existing databases.
We demonstrated that identical phages were present on different individuals and in different body
sites, and we conducted a detailed analysis of the structural organization of these phages. We further
found that a bacteriophage related to the Staphylococcus capitis phage Stb20 may be a common skin
commensal virus potentially regulating its host and its activities on the ski
Characterizing the Kathmandu Valley sediment response through strong motion recordings of the 2015 Gorkha earthquake sequence
We analyze strong motion records and high-rate GPS measurements of the M 7.8 Gorkha mainshock, M 7.3 Dolakha, and two moderate aftershock events recorded at four stations on the Kathmandu basin sediments, and one on rock-outcrop. Recordings on soil from all four events show systematic amplification relative to the rock site at multiple frequencies in the 0.1–2.5 Hz frequency range, and de-amplification of higher frequencies ( >2.5–10 Hz). The soil-to-rock amplification ratios for the M 7.8 and M 7.3 events have lower amplitude and frequency peaks relative to the ratios of the two moderate events, effects that could be suggestive of nonlinear site response. Further, comparisons to ground motion prediction equations show that 1) both soil and rock mainshock recordings were severely depleted of high frequencies, and 2) the depletion at high frequencies is not present in the aftershocks. These observations indicate that the high frequency deamplification is additionally related to characteristics of the source that are not captured by simplified ground motion prediction equations, and allude to seismic hazard analysis models being revised – possibly by treating isolated high frequency radiation sources separately from long period components to capture large magnitude near-source events such as the 2015 Gorkha mainshock
High carbon dioxide flux associated with radon-222 gas exhalation and dipolar self-potential anomaly at the Syabru-Bensi hot springs in central Nepal
Gas discharges have been identified at the Syabru-Bensi hot springs, located at the Main Central Thrust zone in Central Nepal and characterized by a water temperature reaching 61°C, high salinity and high alkalinity. The gas is mainly dry carbon dioxide, marked by a δ13C isotopic anomaly of -0.8‰. The diffuse carbon dioxide exhalation flux, mapped by the accumulation chamber method, reaches 19 000 g×m-2×day-1, comparable with values measured on active volcanoes. Radon exhalation flux at the soil surface has been measured at more than sixty points in the vicinity of the main gas discharge. Extreme values, larger than 2 Bq×m-2×s-1, similar to peak values measured in volcanic areas or above uranium waste piles, are observed in association with the larger values of the carbon dioxide exhalation flux. This high radon exhalation thus results from emanation at depth, producing a radon concentration in the pore space varying from 25 000 to more than 50 000 Bq×m-3, transported to the surface by the flow of carbon dioxide. The high radon-222 content of the carbon dioxide offers an interesting tracing method and an additional practical tool for long term monitoring, for example to study transient changes preceding large earthquakes. An extended dipolar self-potential anomaly has also been found, with a negative pole reaching -180 mV at the main gas discharge, and a wide positive lobe on the terrace above. This dipolar anomaly, the largest reported so far, is interpreted in a hydroelectrical numerical model assuming a primary upward fluid flow associated with the gas, coupled with a secondary flow towards the springs, taking into account the resistivity structure obtained from profiles of electrical resistivity tomography. Thus, the Syabru-Bensi hot springs provide a unique opportunity to study the generation of electrical currents associated with biphasic fluid flow in a geodynamically active area. A pilot multidisciplinary team has now undertaken a multidisciplinary study of the geological, geophysical and geochemical properties of the Syabru-Bensi geothermal system. Studying the spatial and temporal variations of the gas discharges and the associated properties of the hot springs may lead to important clues on the presence and displacements of crustal fluids in relation with the nucleation of large earthquakes in the Nepal Himalayas
Strong-Motion Observations of the MÂ 7.8 Gorkha, Nepal, Earthquake Sequence and Development of the N-SHAKE Strong-Motion Network
We present and describe strong-motion data observations from the 2015 M 7.8 Gorkha, Nepal, earthquake sequence collected using existing and new Quake-Catcher Network (QCN) and U.S. Geological Survey NetQuakes sensors located in the Kathmandu Valley. A comparison of QCN data with waveforms recorded by a conventional strong-motion (NetQuakes) instrument validates the QCN data. We present preliminary analysis of spectral accelerations, and peak ground acceleration and velocity for earthquakes up to M 7.3 from the QCN stations, as well as preliminary analysis of the mainshock recording from the NetQuakes station. We show that mainshock peak accelerations were lower than expected and conclude the Kathmandu Valley experienced a pervasively nonlinear response during the mainshock. Phase picks from the QCN and NetQuakes data are also used to improve aftershock locations. This study confirms the utility of QCN instruments to contribute to ground-motion investigations and aftershock response in regions where conventional instrumentation and open-access seismic data are limited. Initial pilot installations of QCN instruments in 2014 are now being expanded to create the Nepal–Shaking Hazard Assessment for Kathmandu and its Environment (N-SHAKE) network.Published versio