1 research outputs found

    A Data Centric Privacy Preserved Mining Model for Business Intelligence Applications

    Get PDF
    In present day competitive scenario, the techniques such as data warehouse and on-line analytical process (OLAP) have become a very significant approach for decision support in data centric applications and industries. In fact the decision support mechanism puts certain moderately varied needs on database technology as compared to OLAP based applications. Data centric decision support schemes (DSS) like data warehouse might play a significant role in extracting details from various areas and for standardizing data throughout the organization to achieve a singular way of detail presentation. Such efficient data presentation facilitates information for decision making in business intelligence (BI) applications in various industrial services. In order to enhance the effectiveness and robust computation in BI applications, the optimization in data mining and its processing is must. On the other hand, being in a multiuser scenario, the security of data on warehouse is also a critical issue, which is not explored till date. In this paper a data centric and service oriented privacy preserved model for BI applications has been proposed. The optimization in data mining has been accomplished by means of C5.0 classification algorithm and comparative study has been done with C4.5 algorithm. The implementation of enhanced C5.0 algorithm with BI model would provide much better performance with privacy preservation facility for Business Intelligence applications
    corecore