4 research outputs found

    Cluster Aware Mobility Encounter Dataset Enlargement

    Full text link
    The recent emerging fields in data processing and manipulation has facilitated the need for synthetic data generation. This is also valid for mobility encounter dataset generation. Synthetic data generation might be useful to run research-based simulations and also create mobility encounter models. Our approach in this paper is to generate a larger dataset by using a given dataset which includes the clusters of people. Based on the cluster information, we created a framework. Using this framework, we can generate a similar dataset that is statistically similar to the input dataset. We have compared the statistical results of our approach with the real dataset and an encounter mobility model generation technique in the literature. The results showed that the created datasets have similar statistical structure with the given dataset.Comment: 5 pages, 4 figures. In 2019 International Wireless Communications and Mobile Computing Conference (IWCMC), June 201

    Deep Learning Driven Venue Recommender for Event-Based Social Networks

    No full text

    Biometric identification of Black Bengal goat: unique iris pattern matching system vs deep learning approach

    Get PDF
    Objective Iris pattern recognition system is well developed and practiced in human, however, there is a scarcity of information on application of iris recognition system in animals at the field conditions where the major challenge is to capture a high-quality iris image from a constantly moving non-cooperative animal even when restrained properly. The aim of the study was to validate and identify Black Bengal goat biometrically to improve animal management in its traceability system. Methods Forty-nine healthy, disease free, 3 months±6 days old female Black Bengal goats were randomly selected at the farmer’s field. Eye images were captured from the left eye of an individual goat at 3, 6, 9, and 12 months of age using a specialized camera made for human iris scanning. iGoat software was used for matching the same individual goats at 3, 6, 9, and 12 months of ages. Resnet152V2 deep learning algorithm was further applied on same image sets to predict matching percentages using only captured eye images without extracting their iris features. Results The matching threshold computed within and between goats was 55%. The accuracies of template matching of goats at 3, 6, 9, and 12 months of ages were recorded as 81.63%, 90.24%, 44.44%, and 16.66%, respectively. As the accuracies of matching the goats at 9 and 12 months of ages were low and below the minimum threshold matching percentage, this process of iris pattern matching was not acceptable. The validation accuracies of resnet152V2 deep learning model were found 82.49%, 92.68%, 77.17%, and 87.76% for identification of goat at 3, 6, 9, and 12 months of ages, respectively after training the model. Conclusion This study strongly supported that deep learning method using eye images could be used as a signature for biometric identification of an individual goat
    corecore