36 research outputs found

    Modelling and characterisation of ultrasonic joints for Li-ion batteries to evaluate the impact on electrical resistance and temperature raise

    Get PDF
    In automotive and stationary Li-ion battery packs, a large number of individual cells, typically hundreds to thousands of cells, are electrically connected to achieve pack specification. These large number of interconnections are mainly achieved by welding cell tab to bus-bar using a welding technique of choice. Ultrasonic metal welding (UMW) is one of the common joining technique employed to join pouch cell’s tabs to bus-bar. Although commonly employed, there is little research currently exist in literature reporting the joint characteristics in terms of electrical resistance and temperature raise due to charge-discharge current. Li-ion batteries reaching sub-milliohm internal resistance, risks the temperature raise at the joint could be even higher than the cell itself which raise a serious safety concern and they are to be addressed. This research investigates the electrical and thermal characteristics of ultrasonic joints of 0.3 mm aluminium/nickel coated copper tabs to 1.0 mm copper bus-bar. This article reports the dynamic behaviour of electrical resistance and corresponding temperature increase as a result of current flow. To capture the electrical and thermal behaviour of the joint, a numerical model has been developed and validated with experimental results, which can be employed to analyse battery pack performance

    Capacity fade modelling of lithium-ion battery under cyclic loading conditions

    Get PDF
    A pseudo two-dimensional (P2D) electro-chemical lithium-ion battery model is presented in this paper to study the capacity fade under cyclic charge-discharge conditions. The Newman model [1,2] has been modified to include a continuous solvent reduction reaction responsible for the capacity fade and power fade. The temperature variation inside the cell is accurately predicted using a distributed thermal model coupled with the internal chemical heat generation. The model is further improved by linking the porosity variation with the electrolyte partial molar concentration, thereby proving a stronger coupling between the battery performance and the chemical properties of electrolyte. The solid electrolyte interface (SEI) layer growth is estimated for different cut-off voltages and charging current rates. The results show that the convective heat transfer coefficient as well as the porosity variation influences the SEI layer growth and the battery life significantly. The choice of an electrolyte decides the conductivity and partial molar concentration, which is found to have a strong influence on the capacity fade of the battery. The present battery model integrates all essential electro-chemical processes inside a lithium-ion battery under a strong implicit algorithm, proving a useful tool for computationally fast battery monitoring system

    Prediction of cyclic ageing and storage ageing in a lithium ion battery using an electrochemical model

    Get PDF
    Prediction of ageing for lithium-ion cell is essential. However this is a complicated area with few modelling techniques available.The influence of cycling and storage on capacity fading side reaction is investigated for the first time using an electrochemical model. Thus this paper is a unique attempt toward developing a model which can predict combined cycling and storage. Also this work establishes guideline for calculating the SEI properties based on storage ageing experimentation. Very few works correlated the experimentally observed degradation characteristics with properties of SEI layer or chemical characteristics of a battery. The conventional cyclic ageing correlation cannot be used for storage ageing due to the weak relation of degradation with SoC. In this case, the cycling correlation predicts almost the same degradation at lower SoC and at higher SoC, which is counter intuitive to experimental observations.This limits the applicability of an electrochemical model for HEV storage-cycling drive cycle since the ageing characteristics predicted during the storage time will be erroneous. In this work, the Pseudo Two Dimensional Model (P2D) equations are modified to include a continuous solvent reduction reaction responsible for capacity fade which is well established and widely applied in previous literatures [1,2.3.4]. The capability of this model to predict the SEI layer growth and internal resistance increase under different operating conditions is carefully used to analyse the storage and cycling reaction contributions. The critical parameter controlling the rate of SEI layer growth is the side reaction coefficient. Another important parameter is the temperature of the battery which is found to accelerate cell ageing. However, in this work, the analysis is limited to isothermal condition since the dependency of temperature on cell operating parameters is complex

    Effect of natural convection on oscillating flow in a pipe with cryogenic temperature difference across the ends

    Get PDF
    The effect of natural convection on the oscillatory flow in an open-ended pipe driven by a timewise sinusoidally varying pressure at one end and subjected to an ambient-to-cryogenic temperature difference across the ends, is numerically studied. Conjugate effects arising out of the interaction of oscillatory flow with heat conduction in the pipe wall are taken into account by considering a finite thickness wall with an insulated exterior surface. Two cases, namely, one with natural convection acting downwards and the other, with natural convection acting upwards, are considered. The full set of compressible flow equations with axissymmetry are solved using a pressure correction algorithm. Parametric studies are conducted with frequencies in the range 5–15 Hz for an end-to-end temperature difference of 200 and 50 K. Results are obtained for the variation of velocity, temperature, Nusselt number and the phase relationship between mass flow rate and temperature. It is found that the Rayleigh number has a minimal effect on the time averaged Nusselt number and phase angle. However, it does influence the local variation of velocity and Nusselt number over one cycle. The natural convection and pressure amplitude have influence on the energy flow through the gas and solid

    Electrochemical modelling of Li-ion battery pack with constant voltage cycling

    Get PDF
    In a battery pack, cell-to-cell chemical variation, or the variation in operating conditions, can possibly lead to current imbalance which can accelerate pack ageing. In this paper, the Pseudo-TwoDimensional(P2D) porous electrode model is extended to a battery pack layout, to predict the overall behaviour and the cell-to-cell variation under constant voltage charging and discharging. The algorithm used in this model offers the flexibility in extending the layout to any number of cells in a pack, which can be of different capacities, chemical characteristics and physical dimensions. The coupled electrothermal effects such as differential cell ageing, temperature variation, porosity change and their effects on the performance of the pack, can be predicted using this modelling algorithm. The pack charging voltage is found to have an impact on the performance as well as the SEI layer growth. Numerical studies are conducted by keeping the cells at different thermal conditions and the results show the necessity to increase the heat transfer coefficient to cool the pack, compared to single cell. The results show that the thermal imbalance has more impact than the change in inter-connecting resistance on the split current distribution, which accelerates the irreversible porous filling and ageing

    A mass transfer based variable porosity model with particle radius change for a Lithium-ion battery

    Get PDF
    Micro pore-clogging in the electrodes due to SEI growth and other side reactions can cause adverse effects on the performance of a Lithium-ion battery. The fundamental problem of volume fraction variation and particle radius change during the charge-discharge process in a lithium-ion battery is modelled in this paper with the help of mass transfer based formulation and demonstrated on a battery with LiCoO2 chemistry. The model can handle the volume fraction change due to intercalation reaction, solvent reduction side reaction and the electrolyte density change due to side reaction contamination in the battery. The entire calculation presented in this paper models particle radius and volume fraction together and therefore gives greater accuracy in calculating the volume-specific-area of the reacting particles which is an important parameter controlling the Butler-Volmer kinetics. The mass deposit on the electrode (or loss of lithium) gives an indication of the amount of pre-lithiation required to maintain cell performance while the amount of mass deposited on the SEI helps to decide the safe operating condition for which the clogging of pores and capacity fade will be minimal. Moreover the model presented in this paper has wide applicability in analysing the stress development inside the battery due to irreversible porous filling

    CFD analysis of high frequency miniature pulse tube refrigerators for space applications with thermal non-equilibrium model

    Get PDF
    High frequency, miniature, pulse tube cryocoolers are extensively used in space applications because of their simplicity. Parametric studies of inertance type pulse tube cooler are performed with different length-to-diameter ratios of the pulse tube with the help of the FLUENT® package. The local thermal non-equilibrium of the gas and the matrix is taken into account for the modeling of porous zones, in addition to the wall thickness of the components. Dynamic characteristics and the actual mechanism of energy transfer in pulse are examined with the help of the pulse tube wall time constant. The heat interaction between pulse tube wall and the oscillating gas, leading to surface heat pumping, is quantified. The axial heat conduction is found to reduce the performance of the pulse tube refrigerator. The thermal non-equilibrium predicts a higher cold heat exchanger temperature compared to thermal equilibrium. The pressure drop through the porous medium has a strong non-linear effect due to the dominating influence of Forchheimer term over that of the linear Darcy term at high operating frequencies. The phase angle relationships among the pressure, temperature and the mass flow rate in the porous zones are also important in determining the performance of pulse tube refrigerator

    Parametric optimization study of a lithium-ion cell

    Get PDF
    Lithium-ion cell technology is well known for its high power and energy density in the automotive application. This paper presents development of a 1D electrochemical model which can be used to predict 18650 lithium-ion cell performance under different operating conditions. COMSOL Multiphysics 5.2a software has been utilized to develop the electrochemical model to predict the cell behaviour under various discharge rates. This tool uses the finite element method (FEM) to solve the conservation equations of charge and species in solid and electrolyte phase. And Butler-Volmer equation for reaction rates of lithium insertion and extraction. In an event that the electrochemical parameters of the cell are not known, determination of these parameters by measurements or experiments is a difficult and challenging task. An attempt has been made in this paper to estimate unknown cell parameters by two methods, first by performing a parametric study on cell parameters such as particle radius, diffusion coefficient, porosity etc. within a known range from literature studies and analyse the sensitivity of these parameters on the model results. Secondly, to improve the accuracy of the simulation results, COMSOL optimization module is used and the simulation results are validated against the experimental data. Apart from the discharge profiles, the proposed model can also be used to study the time dependent distribution of lithium-ion concentration, electrolyte concentration, lithium diffusivity and ionic conductivity in the cell

    Prediction of battery storage ageing and solid electrolyte interphase property estimation using an electrochemical model

    Get PDF
    Ageing prediction is often complicated due to the interdependency of ageing mechanisms. Research has highlighted that storage ageing is not linear with time. Capacity loss due to storing the battery at constant temperature can shed more light on parametrising the properties of the Solid Electrolyte Interphase (SEI); the identification of which, using an electrochemical model, is systematically addressed in this work. A new methodology is proposed where any one of the available storage ageing datasets can be used to find the property of the SEI layer. A sensitivity study is performed with different molecular mass and densities which are key parameters in modelling the thickness of the SEI deposit. The conductivity is adjusted to fine tune the rate of capacity fade to match experimental results. A correlation is fitted for the side reaction variation to capture the storage ageing in the 0%–100% SoC range. The methodology presented in this paper can be used to predict the unknown properties of the SEI layer which is difficult to measure experimentally. The simulation and experimental results show that the storage ageing model shows good accuracy for the cases at 50% and 90% and an acceptable agreement at 20% SoC

    Modified electrochemical parameter estimation of NCR18650BD battery using implicit finite volume method

    Get PDF
    The Pseudo Two Dimensional (P2D) porous electrode model is less preferred for real time calculations due to the high computational expense and complexity in obtaining the wide range of electro-chemical parameters despite of its superior accuracy. This paper presents a finite volume based method for re-parametrising the P2D model for any cell chemistry with uncertainty in determining precise electrochemical parameters. The re-parametrisation is achieved by solving a quadratic form of the Butler-Volmer equation and modifying the anode open circuit voltage based on experimental values. Thus the only experimental result, needed to re-parametrise the cell, reduces to the measurement of discharge voltage for any C-rate. The proposed method is validated against the 1C discharge data and an actual drive cycle of a NCR18650BD battery with NCA chemistry when driving in an urban environment with frequent accelerations and regenerative braking events. The error limit of the present model is compared with the electro-chemical prediction of LiyCoO2 battery and found to be superior to the accuracy of the model presented in the literature
    corecore