4 research outputs found

    Emoji’s sentiment score estimation using convolutional neural network with multi-scale emoji images

    Get PDF
    Emojis are any small images, symbols, or icons that are used in social media. Several well-known emojis have been ranked and sentiment scores have been assigned to them. These ranked emojis can be used for sentiment analysis; however, many new released emojis have not been ranked and have no sentiment score yet. This paper proposes a new method to estimate the sentiment score of any unranked emotion emoji from its image by classifying it into the class of the most similar ranked emoji and then estimating the sentiment score using the score of the most similar emoji. The accuracy of sentiment score estimation is improved by using multi-scale images. The ranked emoji image data set consisted of 613 classes with 161 emoji images from three different platforms in each class. The images were cropped to produce multi-scale images. The classification and estimation were performed by using convolutional neural network (CNN) with multi-scale emoji images and the proposed voting algorithm called the majority voting with probability (MVP). The proposed method was evaluated on two datasets: ranked emoji images and unranked emoji images. The accuracies of sentiment score estimation for the ranked and unranked emoji test images are 98% and 51%, respectively

    Electronic cleansing in computed tomography colonography using AT layer identification with integration of gradient directional second derivative and material fraction model

    No full text
    Abstract Background In computed tomography colonography images, electronic cleansing (EC) is applied to remove opacified residual materials, called fecal-tagging materials (FTM), using positive-contrast tagging agents and laxative to facilitate polyp detection. Methods The proposed EC, EC prop , integrates the gradient directional second derivative into material fraction model to preserve submerged soft tissue (ST) under FTM. Three-material fraction model is used to remove FTM and artifacts at air-tagging (AT) layers and T-junctions where air, ST, and FTM material meet simultaneously. Moreover, the proposed AT layer identification is used to distinguish AT layers from air-tissue-tagging (ATT) layers in order to preserve ATT layers during cleansing. The clinical evaluation on 467 3-Dimensional band view images was conducted by the abdominal radiologist using four grading levels of cleansing quality with five causes of low quality EC. The amount of the remaining artifacts at T-junctions was approximated from the results of EC prop . The results from EC prop were compared with the results from syngo.via Client 3.0 Software, EC syngo , and the fast three-material modeling, EC prev , using the preference of the radiologist. Two-tailed paired Wilcoxon signed rank test is used to indicate statistical significance. Results The average grade on cleansing quality is 2.89 out of 4. The artifacts at T-junctions from 86.94% of the test images can be removed, whereas artifacts at T-junctions from only 13.06% of the test images cannot be removed. For 13.06% of the test images, the results from EC prop are more preferable to the results from EC syngo (p<0.008). For all the test images, the results from EC prop are more preferable to the results from EC prev (p<0.001). Finally, the visual assessment shows that EC prop can preserve ATT layers, submerged polyps and folds while EC prev can preserve only submerged folds but fails to preserve ATT layers. Conclusion From our implementation, EC prop can improve the performance of the existing EC, such that it can preserve ST, especially ATT layers and remove the artifacts at T-junctions which have never been proposed by any other methods before
    corecore