6,815 research outputs found
Smart Meter Privacy: A Utility-Privacy Framework
End-user privacy in smart meter measurements is a well-known challenge in the
smart grid. The solutions offered thus far have been tied to specific
technologies such as batteries or assumptions on data usage. Existing solutions
have also not quantified the loss of benefit (utility) that results from any
such privacy-preserving approach. Using tools from information theory, a new
framework is presented that abstracts both the privacy and the utility
requirements of smart meter data. This leads to a novel privacy-utility
tradeoff problem with minimal assumptions that is tractable. Specifically for a
stationary Gaussian Markov model of the electricity load, it is shown that the
optimal utility-and-privacy preserving solution requires filtering out
frequency components that are low in power, and this approach appears to
encompass most of the proposed privacy approaches.Comment: Accepted for publication and presentation at the IEEE SmartGridComm.
201
Gate-Level Simulation of Quantum Circuits
While thousands of experimental physicists and chemists are currently trying
to build scalable quantum computers, it appears that simulation of quantum
computation will be at least as critical as circuit simulation in classical
VLSI design. However, since the work of Richard Feynman in the early 1980s
little progress was made in practical quantum simulation. Most researchers
focused on polynomial-time simulation of restricted types of quantum circuits
that fall short of the full power of quantum computation. Simulating quantum
computing devices and useful quantum algorithms on classical hardware now
requires excessive computational resources, making many important simulation
tasks infeasible. In this work we propose a new technique for gate-level
simulation of quantum circuits which greatly reduces the difficulty and cost of
such simulations. The proposed technique is implemented in a simulation tool
called the Quantum Information Decision Diagram (QuIDD) and evaluated by
simulating Grover's quantum search algorithm. The back-end of our package,
QuIDD Pro, is based on Binary Decision Diagrams, well-known for their ability
to efficiently represent many seemingly intractable combinatorial structures.
This reliance on a well-established area of research allows us to take
advantage of existing software for BDD manipulation and achieve unparalleled
empirical results for quantum simulation
Utility of B-type natriuretic peptide in predicting medium-term mortality in patients undergoing major non-cardiac surgery
We assessed the ability of pre-operative B-type natriuretic peptide (BNP) levels to predict medium-term mortality in patients undergoing major noncardiac surgery. During a median 654 days follow-up 33 patients from a total cohort of 204 patients (16%) died. The optimal cut-off in this cohort, determined using a receiver operating characteristic curve, was >35pg.mL-1. This was associated with a 3.47-fold increase in the hazard of death (p=0.001) and had a sensitivity of 70% and a specificity of 68% for this outcome. These findings extend recent work demonstrating that BNP levels obtained before major noncardiac surgery can be used to predict peri-operative morbidity, and indicate that they also forecast medium-term mortality.This work was supported by a grant from TENOVUS Scotland. The Health Services Research Unit is core-funded by the Chief Scientists Office of the Scottish Executive Health Department.Peer reviewedAuthor versio
Rapapport's broth, a better enrichment medium in the identification of Salmonella from processed frog legs
Live clams (Villorita cyprinoides) collected from their natural beds were packed in different ways like dry pack, tray pack, in oxygenated water (wet pack) and depurated samples in wet pack. It was found that the packaging in l kg lots in 200 gauge polythene bags with oxygen at a temperature of 20°C could keep them live for 4 days. In tray pack without oxygen and water they can be kept alive for 3 days at 20°C. Temperature seems to be the critical factor in the transportation of live clams. At room temperature both dry and wet pack can be kept for 24 h only. Depuration technique does not appear to be useful in prolonging the storage life of clams in live condition as percentage mortality is more at 48 h both at 20°C and room temperature compared to the non-depurated samples
Adiabatic times for Markov chains and applications
We state and prove a generalized adiabatic theorem for Markov chains and
provide examples and applications related to Glauber dynamics of Ising model
over Z^d/nZ^d. The theorems derived in this paper describe a type of adiabatic
dynamics for l^1(R_+^n) norm preserving, time inhomogeneous Markov
transformations, while quantum adiabatic theorems deal with l^2(C^n) norm
preserving ones, i.e. gradually changing unitary dynamics in C^n
Elastic modulus of shape-memory NiTi from in situ neutron diffraction during macroscopic loading, instrumented indentation, and extensometryl
The elastic modulus of B19\u27 shape-memory NiTi was determined using three techniques; from the response of lattice planes measured using in situ neutron diffraction during loading, instrumented indentation using a spherical indenter and macroscopic extensometry. The macroscopic measurements resulted in a modulus of 68 GPa, significantly less than the 101 GPa from indentation and the lattice plane average of 109 GPa from neutron diffraction. Evidence from the neutron measurements suggests that the disparity derives from the onset of small amounts of twinning at stresses less that 40 MPa, which might otherwise be considered elastic from a macroscopic view point
- âŠ