3,164 research outputs found
Theory of ferromagnetism in (A,Mn)B semiconductors
A brief review of theory of ferromagnetism of dilute magnetic semiconductors
of the form (A,Mn)B based on the double exchange model is first given. A
systematic investigation of the phenomena extending the current theory is
outlined. We begin with an investigation of the regions of instability of the
nonmagnetic towards the ferromagnetic state of a system of Mn-atoms doped in
AB-type semiconductor. A self-consistent many-body theory of the ferromagnetic
state is then developed, going beyond the mean field approaches by including
fluctuations of the Mn-spins and the itinerant hole-gas. A functional theory
suitable for computation of system properties such as Curie temperature as a
function of hole and the Mn-concentration, spin-current, etc. is formulated.Comment: 16 page
A thermodynamic framework to develop rate-type models for fluids without instantaneous elasticity
In this paper, we apply the thermodynamic framework recently put into place
by Rajagopal and co-workers, to develop rate-type models for viscoelastic
fluids which do not possess instantaneous elasticity. To illustrate the
capabilities of such models we make a specific choice for the specific
Helmholtz potential and the rate of dissipation and consider the creep and
stress relaxation response associated with the model. Given specific forms for
the Helmholtz potential and the rate of dissipation, the rate of dissipation is
maximized with the constraint that the difference between the stress power and
the rate of change of Helmholtz potential is equal to the rate of dissipation
and any other constraint that may be applicable such as incompressibility. We
show that the model that is developed exhibits fluid-like characteristics and
is incapable of instantaneous elastic response. It also includes Maxwell-like
and Kelvin-Voigt-like viscoelastic materials (when certain material moduli take
special values).Comment: 18 pages, 5 figure
Magnetic vortex in color-flavor locked quark matter
Within Ginzburg-Landau theory, we study the structure of a magnetic vortex in
color-flavor locked quark matter. This vortex is characterized by winding of
the SU(3) phase in color-flavor space, as well as by the presence of a
color-flavor unlocked condensate in the core. We estimate the upper and lower
critical fields and the critical Ginzburg-Landau parameter that distinguishes
between type I and type II superconductors.Comment: 8 pages, 1 figur
Aquaculture vis-a-vis agriculture
The effect of aquaculture, especially shrimp farming, on agriculture has caused heated debate among aquaculturists, agriculturists, and non-governmental organizations. As data on the negative impact of shrimp farming on adjacent rice fields are not available, a study was undertaken in rice fields skirting three shrimp farms: a semi-intensive farm; an extensive farm; and a semi-intensive farm with a buffer zone. The buffer zone was found to be helpful in preventing salinization of the adjacent agricultural fields and the Electrical Conductivity (EC) values (less than 1) reported were found to be harmless to the rice crop. Thus, aquaculture and agriculture can coexist in coastal areas if there are buffer zones in between
Inhomogeneous phase of a Gluon Plasma at finite temperature and density
By considering the non-perturbative effects associated with the fundamental
modular region, a new phase of a Gluon Plasma at finite density is proposed. It
corresponds to the transition from glueballs to non-perturbative gluons which
condense at a non vanishing momentum. In this respect the proposed phase is
analogous to the color superconducting LOFF phase for fermionic systems.Comment: 5 pages, 2 figure
Hydrodynamic Models for Heavy Ion Collisions
Application of hydrodynamics for modeling of heavy-ion collisions is
reviewed. We consider several physical observables that can be calculated in
this approach and compare them to the experimental measurements.Comment: 42 pages, 15 figures, An invited review for Nov. 2006 edition of
Annual Review of Nuclear and Particle Physic
A model for the degradation of polyimides due to oxidation
Polyimides, due to their superior mechanical behavior at high temperatures,
are used in a variety of applications that include aerospace, automobile and
electronic packaging industries, as matrices for composites, as adhesives etc.
In this paper, we extend our previous model in [S. Karra, K. R. Rajagopal,
Modeling the non-linear viscoelastic response of high temperature polyimides,
Mechanics of Materials, In press, doi:10.1016/j.mechmat.2010.09.006], to
include oxidative degradation of these high temperature polyimides. Appropriate
forms for the Helmholtz potential and the rate of dissipation are chosen to
describe the degradation. The results for a specific boundary value problem,
using our model compares well with the experimental creep data for PMR-15 resin
that is aged in air.Comment: 13 pages, 2 figures, submitted to Mechanics of Time-dependent
Material
Entanglement of Pure Two-Mode Gaussian States
The entanglement of general pure Gaussian two-mode states is examined in
terms of the coefficients of the quadrature components of the wavefunction. The
entanglement criterion and the entanglement of formation are directly evaluated
as a function of these coefficients, without the need for deriving local
unitary transformations. These reproduce the results of other methods for the
special case of symmetric pure states which employ a relation between squeezed
states and Einstein-Podolsky-Rosen correlations. The modification of the
quadrature coefficients and the corresponding entanglement due to application
of various optical elements is also derived.Comment: 12 page
- …