18 research outputs found

    Mechanical Intelligence (MI): A Bioinspired Concept for Transforming Engineering Design

    Get PDF
    Despite significant scientific advances in the past decades, most structures around us are static and ironically outdated from a technological perspective. Static structures have limited efficiency and durability and typically perform only a single task. Adaptive structures, in contrast, adjust to different conditions, tasks, and functions. They not only offer multi-functionality but also enhanced efficiency and durability. Despite their obvious advantages over conventional structures, adaptive structures have only been limitedly used in everyday life applications. This is because adaptive structures often require sophisticated sensing, feedback, and controls, which make them costly, heavy, and complicated. To overcome this problem, here the concept of Mechanical Intelligence (MI) is introduced to promote the development of engineering systems that adapt to circumstances in a passive-automatic way. MI will offer a new paradigm for designing structural components with superior capabilities. As adaptability has been rewarded throughout evolution, nature provides one of the richest sources of inspiration for developing adaptive structures. MI explores nature-inspired mechanisms for automatic adaptability and translates them into a new generation of mechanically intelligent components. MI structures, presenting widely accessible bioinspired solutions for adaptability, will facilitate more inclusive and sustainable industrial development, reflective of Goal 9 of the 2030 Agenda for Sustainable Development

    Complexity biomechanics: a case study of dragonfly wing design from constituting composite material to higher structural levels.

    Get PDF
    Presenting a novel framework for sustainable and regenerative design and development is a fundamental future need. Here we argue that a new framework, referred to as complexity biomechanics, which can be used for holistic analysis and understanding of natural mechanical systems, is key to fulfilling this need. We also present a roadmap for the design and development of intelligent and complex engineering materials, mechanisms, structures, systems, and processes capable of automatic adaptation and self-organization in response to ever-changing environments. We apply complexity biomechanics to elucidate how the different structural components of a complex biological system as dragonfly wings, from ultrastructure of the cuticle, the constituting bio-composite material of the wing, to higher structural levels, collaboratively contribute to the functionality of the entire wing system. This framework not only proposes a paradigm shift in understanding and drawing inspiration from natural systems but also holds potential applications in various domains, including materials science and engineering, biomechanics, biomimetics, bionics, and engineering biology. [Abstract copyright: © 2024 The Author(s).

    WingSegment: A Computer Vision‐Based Hybrid Approach for Insect Wing Image Segmentation and 3D Printing

    Get PDF
    This article introduces WingSegment, a MATLAB app‐designed tool employing a hybrid approach of computer vision and graph theory for precise insect wing image segmentation. WingSegment detects cells, junctions, Pterostigma, and venation patterns, measuring geometric features and generating Voronoi patterns. The tool utilizes region‐growing, thinning, and Dijkstra's algorithms for boundary detection, junction identification, and vein path extraction. It provides histograms and box plots of geometric features, facilitating comprehensive wing analysis. WingSegment's efficiency is validated through comparisons with established tools and manual measurements, demonstrating accurate results. The tool further enables exporting detected boundaries as FreeCAD macro files for 3D modeling and printing, supporting finite element analysis. Beyond advancing insect wing morphology understanding, WingSegment holds broader implications for diverse planar structures, including leaves and geocells. This tool not only enhances automated geometric analysis and 3D model generation in insect wing studies but also contributes to the broader advancement of analysis, 3D printing, and modeling technologies across various planar structures

    Locomotory Behavior of Water Striders with Amputated Legs

    Get PDF
    The stability of the body during locomotion is a fundamental requirement for walking animals. The mechanisms that coordinate leg movement patterns are even more complex at water–air interfaces. Water striders are agile creatures on the water surface, but they can be vulnerable to leg damage, which can impair their movement. One can assume the presence of certain compensatory biomechanical factors that are involved in the maintenance of postural balance lost after an amputation. Here, we studied changes in load distribution among the legs and assessed the effects of amputation on the locomotory behavior and postural defects that may increase the risk of locomotion failure. Apparently, amputees recover a stable posture by applying leg position modifications (e.g., widening the stance) and by load redistribution to the remaining legs. Water striders showed steering failure after amputation in all cases. Amputations affected locomotion by (1) altering motion features (e.g., shorter swing duration of midlegs), (2) functional constraints on legs, (3) shorter travelled distances, and (4) stronger deviations in the locomotion path. The legs functionally interact with each other, and removal of one leg has detrimental effects on the others. This research may assist the bioinspired design of aquatic robots

    Strong attachment as an adaptation of flightless weevils on windy oceanic islands

    Get PDF
    Enhanced attachment ability is common in plants on islands to avoid potential fatal passive dispersal. However, whether island insects also have increased attachment ability remains unclear. Here we measured the attachment of a flightless weevil, Pachyrhynchus sarcitis kotoensis, from tropical islands, and compared it with documented arthropods from the mainland. We examined the morphology and material gradient of its attachment devices to identify the specific adaptive modifications for attachment. We find that the weevil has much stronger attachment force and higher safety factor than previously studied arthropods, regardless of body size and substrate roughness. This probably results from the specific flexible bases of the adhesive setae on the third footpad of the legs. This softer material on the setal base has not been reported hitherto and we suggest that it acts as a flexible hinge to form intimate contact to substrate more effectively. By contrast, no morphological difference in tarsomeres and setae between the weevil and other beetles is observed. Our results show the remarkably strong attachment of an island insect and highlights the potential adaptive benefits of strong attachment in windy island environment. The unique soft bases of the adhesive hairs may inspire the development of strong biomimetic adhesives

    Allometric Scaling Reveals Evolutionary Constraint on Odonata Wing Cellularity via Critical Crack Length

    Get PDF
    Scaling in insect wings is a complex phenomenon that seems pivotal in maintaining wing functionality. In this study, the relationship between wing size and the size, location, and shape of wing cells in dragonflies and damselflies (Odonata) is investigated, aiming to address the question of how these factors are interconnected. To this end, WingGram, the recently developed computer‐vision‐based software, is used to extract the geometric features of wing cells of 389 dragonflies and damselfly wings from 197 species and 16 families. It has been found that the cell length of the wings does not depend on the wing size. Despite the wide variation in wing length (8.42 to 56.5 mm) and cell length (0.1 to 8.5 mm), over 80% of the cells had a length ranging from 0.5 to 1.5 mm, which was previously identified as the critical crack length of the membrane of locust wings. An isometric scaling of cells is also observed with maximum size in each wing, which increased as the size increased. Smaller cells tended to be more circular than larger cells. The results have implications for bio‐mimetics, inspiring new materials and designs for artificial wings with potential applications in aerospace engineering and robotics

    Basal complex: a smart wing component for automatic shape morphing

    Get PDF
    Insect wings are adaptive structures that automatically respond to flight forces, surpassing even cutting-edge engineering shape-morphing systems. A widely accepted but not yet explicitly tested hypothesis is that a 3D component in the wing’s proximal region, known as basal complex, determines the quality of wing shape changes in flight. Through our study, we validate this hypothesis, demonstrating that the basal complex plays a crucial role in both the quality and quantity of wing deformations. Systematic variations of geometric parameters of the basal complex in a set of numerical models suggest that the wings have undergone adaptations to reach maximum camber under loading. Inspired by the design of the basal complex, we develop a shape-morphing mechanism that can facilitate the shape change of morphing blades for wind turbines. This research enhances our understanding of insect wing biomechanics and provides insights for the development of simplified engineering shape-morphing systems

    Versatile Like a Seahorse Tail: A Bio-Inspired Programmable Continuum Robot For Conformal Grasping

    Get PDF
    Compliant grasping is an important function of continuum robots that interact with humans and/or unpredictable environments. However, the existing robots often have cross-sections that remain constant along their length. This causes the robots to exhibit poor grasping ability, especially when dealing with objects with diverse curvatures. Here, inspired by the high adaptability of seahorse tails in grasping, we proposed a cable-driven continuum robot with tapered tensegrity, capable of conformally grasping objects with various curvatures. To characterize the effects of the tapering on the robot’s kinematics, we derived a mechanical model using multi-body dynamic framework for both predicting the configuration and developing a control strategy for cables. Theoretical predictions indicate that the curvature of each unit can be regulated by altering the length of the cables, allowing the robot to conform to objects with curvatures ranging from 1.48 m-1 to 28.21 m-1. We further employed a continuum robot and tested the control strategy that can be used for grasping floating objects when the curvature of the objects is used as the input. Our robotic design, which presents an example of embedded physical intelligence, can inspire in situ characterization techniques for collecting marine debris

    Triple Stiffness: A Bioinspired Strategy to Combine Load‐Bearing, Durability, and Impact‐Resistance

    Get PDF
    Structures with variable stiffness have received increasing attention in the fields of robotics, aerospace, structural, and biomedical engineering. This is because they not only adapt to applied loads, but can also combine mutually exclusive properties. Here inspired by insect wings, the concept of “triple stiffness” is introduced and applied to engineering systems that exhibit three distinct deformability regimes. By implementing “flexible joints,” “mechanical stoppers,” and “buckling zones,” structures are engineered to be not only load-bearing and durable, but also impact-resistant. To practice the performance of the design concept in real-life applications, the developed structures are integrated into 3D printed airplane wing models that withstood collisions without failure. The concept developed here opens new avenues for the development of structural elements that are load-bearing, durable, and impact-resistant at the same time

    Double-spiral: a bioinspired pre-programmable compliant joint with multiple degrees of freedom

    No full text
    Geometry and material are two key factors that determine the functionality of mechanical elements under a specific boundary condition. Optimum combinations of these factors fulfil desired mechanical behaviour. By exploring biological systems, we find widespread spiral-shaped mechanical elements with various combinations of geometries and material properties functioning under different boundary conditions and load cases. Although these spirals work towards a wide range of goals, some of them are used as nature's solution to compactify highly extensible prolonged structures. Characterizing the principles underlying the functionality of these structures, here we profited from the coiling–uncoiling behaviour and easy adjustability of logarithmic spirals to design a pre-programmable compliant joint. Using the finite-element method, we developed a simple model of the joint and investigated the influence of design variables on its geometry and mechanical behaviour. Our results show that the design variables give us a great possibility to tune the response of the joint and reach a high level of passive control on its behaviour. Using 3D printing and mechanical testing, we replicated the numerical simulations and illustrated the application of the joint in practice. The simplicity, pre-programmability and predictable response of our double-spiral design suggest that it provides an efficient solution for a wide range of engineering applications, such as articulated robotic systems and modular metamaterials
    corecore