17 research outputs found

    Physical-vapor-deposited metal oxide thin films for pH sensing applications: Last decade of research progress

    Get PDF
    In the last several decades, metal oxide thin films have attracted significant attention for the development of various existing and emerging technological applications, including pH sensors. The mandate for consistent and precise pH sensing techniques has been increasing across various fields, including environmental monitoring, biotechnology, food and agricultural industries, and medical diagnostics. Metal oxide thin films grown using physical vapor deposition (PVD) with precise control over film thickness, composition, and morphology are beneficial for pH sensing applications such as enhancing pH sensitivity and stability, quicker response, repeatability, and compatibility with miniaturization. Various PVD techniques, including sputtering, evaporation, and ion beam deposition, used to fabricate thin films for tailoring materials’ properties for the advanced design and development of high-performing pH sensors, have been explored worldwide by many research groups. In addition, various thin film materials have also been investigated, including metal oxides, nitrides, and nanostructured films, to make very robust pH sensing electrodes with higher pH sensing performance. The development of novel materials and structures has enabled higher sensitivity, improved selectivity, and enhanced durability in harsh pH environments. The last decade has witnessed significant advancements in PVD thin films for pH sensing applications. The combination of precise film deposition techniques, novel materials, and surface functionalization strategies has led to improved pH sensing performance, making PVD thin films a promising choice for future pH sensing technologies

    A Fast Calculation Method for Analyzing the Effect of Wind Generation on ATC

    No full text
    Wind energy penetration in power system has been increased very fast and large amount of capitals invested for wind farms all around the world. Meanwhile, in power systems with wind turbine generators (WTGs), the value of Available transfer capability (ATC) is influenced by the probabilistic nature of the wind power. The Mont Carlo Simulation (MCS) is the most common method to model the uncertainty of WTG. However, the MCS method suffers from low convergence rate. To overcome this shortcoming, the proposed technique in this paper uses a new formulation for solving ATC problem analytically. This lowers the computational burden of the ATC computation and hence results in increased convergence rate of the MCS. Using this fast technique to evaluate the ATC, wind generation and load correlation is required to get into modeling. A numerical method is presented to consider load and wind correlation. The proposed method is tested on the modified IEEE 118 bus to analyze the impacts of the WTGs on the ATC. The obtained results show that wind generation capacity and its correlation with system load has significant impacts on the network transfer capability. In other words, ATC probability distribution is sensitive to the wind generation capacity

    Effect of Wind Speed and Load Correlation on ELCC of Wind Turbine Generator

    No full text
    Utilization of wind turbines as economic and green production units, poses new challenges to the power system planners, mainly due to the stochastic nature of the wind, adding a new source of uncertainty to the power system. Different types of distribution and correlation between this random variable and the system load makes conventional method inappropriate for modeling such a correlation. In this paper, the correlation between the wind speed and system load is modeled using Copula, a mathematical tool recently used in the field of the applied science. As the effect of the correlation coefficient is the main concern, the copula modeling technique allows simulating various scenarios with different correlations. The conducted simulations in this paper reveals that the wind speed correlation with the load has significant effect on the system reliability indices, such as expected energy not served (EENS) and loss of load probability (LOLP). Moreover, in this paper the effect of the correlation coefficient on the effective load carrying capability (ELCC) of the wind turbines is analyzed, too. To perform the aforementioned simulations and analyses, the modified RBTS with an additional wind farm is used

    Friction Stir Welding Parameters: Impact of Abnormal Grain Growth during Post-Weld Heat Treatment on Mechanical Properties of Al–Mg–Si Welded Joints

    No full text
    Friction stir welding (FSW) is an alternative method to join aluminum (Al) alloys in a solid-state condition. However, the coarsening or dissolution of precipitation hardening phases in the welding zone causes strength reduction or softening behavior in the welded area of age-hardened Al alloys. Therefore, this research aimed to improve the mechanical properties of an FSW Al–Mg–Si alloy via post-weld heat treatment (PWHT) and the possibility of controlling the abnormal grain growth (AGG) using different welding parameters. FSW was performed with different rotational and travel speeds, and T6 heat treatment was carried out on the FSW samples as the PWHT. The results showed a decrease in the strength of the FSW samples compared with that of the base material (BM) due to the dissolution of precipitation hardening particles in the heat-affected zone. However, the emergence of AGG in the microstructure after the T6-PWHT was identified as the potential event in the microstructure of the PWHT samples. It is found that the AGG of the microstructure in similar joints of Al6061(T6) was governed by the welding parameters. The results proved that PWHT was able to increase the tensile properties of the welded samples to values comparable to that of Al6061(T6)-BM. The increased mechanical properties of the FSW joints were attributed to a proper PWHT that resulted in a homogeneous distribution of the precipitation hardening phases in the welding zones

    Structural, magnetic and mechanical properties of hydrous Fe/Ni-based oxide components nanoparticles synthesized by radiolytic method

    No full text
    Hydrous Fe/Ni-based oxide components nanoparticles in core/shell structure were successfully synthesized by radiolytic reduction method. Structural analysis confirmed the formation of double-layered nanoparticles with iron oxide core, which are more easily reducible by gamma radiation rather than Ni ions, and (Fe, Ni)OOH shell at lower irradiation dose. At high irradiation doses, the formation of triple-layered nanoparticles with the core of iron oxide and the outer shell of nickel/nickel oxide and middle layer made of hydroxide of both kinds of metals were observed. The modification of core, shell and middle layer effectively influence on final structure which consequently affect on the magnetic and mechanical properties of the final products. By increasing radiation dose, the phase transition between super-paramagnetic to ferromagnetic has been observed. Moreover, the stiffness value increased by irradiation dose increasing. The phase transition can be explained by variation of Ni content at the surface of iron oxide core, while the increase in the stiffness of the final product is mainly due to the increasing in Ni content of final products

    Effect of compaction pressure on the performance of a non-symmetrical NiO–SDC/SDC composite anode fabricated by conventional furnace

    No full text
    The electrochemical performance of NiO–SDC/SDC anode was studied. The anode was compacted by pressing, after which sintering was conducted in a conventional furnace at 1200 °C. A high-energy ball mill was used to mix the Sm0.2Ce0.8O1.9 (SDC) nanopowder and NiO. A pressing technique was applied to fabricate the NiO–SDC/SDC anode cells. The effect of different compaction pressures (200, 300, and 400 MPa) on the performance of the anodes was investigated via electrochemical impedance spectroscopy at an intermediate temperature range (600–800 °C). The nanoindentation technique and Archimedes method, which were used to measure stiffness and bulk density, respectively, revealed that increases in porosity were correlated with decreases in compaction pressure. High electrochemical performance can be achieved if the compaction pressure is decreased and the operating temperature is increased because of hydrogen spillover during the operation

    Mechanical Property Improvement in Dissimilar Friction Stir Welded Al5083/Al6061 Joints: Effects of Post-Weld Heat Treatment and Abnormal Grain Growth

    No full text
    The 5083 and 6061(T6) aluminum (Al) alloys are widely used in transportation industries and the development of structural designs because of their high toughness and high corrosion resistance. Friction stir welding (FSW) was performed to produce the dissimilar welded joint of Al5083-Al 6061(T6) under different welding parameters. However, softening behavior occurred in the friction stir welded (FSWed) samples because of grain coarsening or the dissolution of precipitation-hardening phases in the welding zone. Consequently, this research intended to investigate the effect of the post-weld heat treatment (PWHT) method on the mechanical property improvement of the dissimilar FSWed Al5083-Al6061(T6) and governing abnormal grain growth (AGG) through different welding parameters. The results showed PWHT enhanced the mechanical properties of dissimilar joints of Al5083-Al6061(T6). AGG was obtained in the microstructure of PWHTed joints, but appropriate PWHT could recover the dissolved precipitation-hardening particle in the heat-affected zone of the as-welded joint. Further, the tensile strength of the dissimilar joint increased from 181 MPa in the as-welded joint to 270 MPa in the PWHTed joint, showing 93% welding efficacy

    Wear Characteristics of Superalloy and Hardface Coatings in Gas Turbine Applications–A Review

    No full text
    In the gas-turbine research field, superalloys are some of the most widely used materials as they offer excellent strength, particularly at extreme temperatures. Vital components such as combustion liners, transition pieces, blades, and vanes, which are often severely affected by wear, have been identified. These critical components are exposed to very high temperatures (ranging from 570 to 1300 °C) in hot-gas-path systems and are generally subjected to heavy repair processes for maintenance works. Major degradation such as abrasive wear and fretting fatigue wear are predominant mechanisms in combustion liners and transition pieces during start–stop or peaking operation, resulting in high cost if inadequately protected. Another type of wear-like erosion is also prominent in turbine blades and vanes. Nimonic 263, Hastelloy X, and GTD 111 are examples of superalloys used in the gas-turbine industry. This review covers the development of hardface coatings used to protect the surfaces of components from wear and erosion. The application of hardface coatings helps reduce friction and wear, which can increase the lifespan of materials. Moreover, chromium carbide and Stellite 6 hardface coatings are widely used for hot-section components in gas turbines because they offer excellent resistance against wear and erosion. The effectiveness of these coatings to mitigate wear and increase the performance is further investigated. We also discuss in detail the current developments in combining these coating with other hard particles to improve wear resistance. The principles of this coating development can be extended to other high-temperature applications in the power-generation industry

    Flight Trajectories Optimization of Fixed-Wing UAV by Bank-Turn Mechanism

    No full text
    This paper addresses an optimization of Unmanned Aerial Vehicle (UAV) flight trajectories by bank-turn mechanism for a fixed-wing UAV at a constant altitude. The flight trajectories should be optimal and stay in the UAV flight operational area. The maneuver planning is conducted in two steps, which are UAV path planning and UAV flight trajectory planning. For the first step, the Bezier curve is employed as a maneuvering path. The path planning optimization objective is to minimize the path length while satisfying maximum curvature and collision avoidance constraints. The flight trajectories optimization objective is to minimize maneuvering time and load factor considering, minimum/maximum speed, minimum/maximum acceleration, maximum roll angle, maximum turn rate, and aerodynamics constraints. The variable speed trajectory generation is developed within allowable speed zone considering these UAV flight constraints by employing meta-heuristic optimizations. Results show that the PSO have outperformed the GA and the GWO for both steps of path planning and trajectory planning. The variable speed has succeeded in reducing the load factor during the bank-turn mechanism using the Bezier curve. The variable speed is recommended to be conducted when the result of the maneuvering path involve the lower turning radius. A simultaneous on arrival target mission has also succeeded to be conducted using the combination of the variable speed and constant speed strategies
    corecore