2 research outputs found

    STUDYING THE EFFECT OF DIFFERENT VARIABLES ON THE FORMULATION OF MUCOADHESIVE BUCCAL PATCHES OF CAPTOPRIL

    Get PDF
    Objective: The objective of this research was to formulate the captopril as mucoadhesive buccal films for hypertension treatment and studying the effect of different variables on the physical and mechanical behavior of the prepared films.Methods: The bucco-adhesive patches were prepared using hydroxyl propyl methyl cellulose K4 (HPMC) as film forming a polymer with secondary polymer included carbopol 934 and eudragit RL100. The patches were prepared by a solvent casting method and evaluated for the weight variation, surface pH, mechanical properties, content, uniformity, ex-vivo mucoadhesive strength, ex-vivo permeation study and drug release study.Results: Formula F5 containing HPMC as primary polymer with carbopol 934 as secondary polymer was chosen to be the best formulation for the following parameters: surface pH6.44, tensile strength (16.06), percentage elongation at break (34.14), swelling index(18.85), mucoadhesive strength(26.2 gm) and the folding endurance was>300 with an in vitro drug release about 94.73% during 6 h.Fourier transforms infrared spectroscopy (FT-IR) and differential scanning calorimetric studies (DSC) showed no interaction between the drug and polymers.Conclusion: It can be concluded that oral mucoadhesive buccal film of captopril, an antihypertensive agent can be prepared utilizing HPMC as a film forming a polymer with carbopol as a secondary polymer which extended the drug release through the buccal mucosa for 6 h

    FORMULATION AND IN VITRO EVALUATION OF AZILSARTAN MEDOXOMIL NANOSUSPENSION

    Get PDF
    Objective: The objective of this study was to formulate and evaluate of the poorly soluble drug, azilsartan medoxomil into nanosuspension to increase the solubility and enhance the dissolution rate and then improve its bioavailability.Methods: Nanosuspension of azilsartan medoxomil was prepared using solvent-antisolvent precipitation method using PVP-K30 as a stabilizer. Eight formulations were prepared to show the effect of different parameters in which four formulations show the effect of stabilizer concentration, three formulations show the effect of stirring speed and two formulations prepare to show the effect of the addition of co-stabilizer such as sodium lauryl sulphate (SLS) and tween 80. All these formulation are evaluated for their particle size and entrapment efficiency. The selected one was evaluated for zeta potential, scanning electron microscope (SEM), saturation solubility, and in vitro drug release.Results: All the prepared formulations were in the nano size. The optimum concentration of the stabilizer was in the formulation when the drug: stabilizer ratio 1:1 and optimum stirring speed was 300 rpm. Dramatic effect on the particle size reduction was found by the addition of co-stabilizer (SLS) in formulation F3 that has P. S 157±0.0 nm. The selected formula F3 showed an enhanced dissolution profile compared to the pure drug at all-time intervals.Conclusion: The results show that the formulation that contain drug: PVP-K30: SLS in ratio 1:0.75:0.25 is the best one and can be utilized to formulate azilsartan medoxomil nanosuspension
    corecore