56 research outputs found

    Magneto-Optical Cooling of Atoms

    Full text link
    We propose an alternative method to laser cooling. Our approach utilizes the extreme brightness of a supersonic atomic beam, and the adiabatic atomic coilgun to slow atoms in the beam or to bring them to rest. We show how internal-state optical pumping and stimulated optical transitions, combined with magnetic forces can be used to cool the translational motion of atoms. This approach does not rely on momentum transfer from photons to atoms, as in laser cooling. We predict that our method can surpass laser cooling in terms of flux of ultra-cold atoms and phase-space density, with lower required laser power and reduced complexity

    Calculation of Atomic Number States: a Bethe Ansatz Approach

    Full text link
    We analyze the conditions for producing atomic number states in a one-dimensional optical box using the Bethe ansatz method. This approach provides a general framework, enabling the study of number state production over a wide range of realistic experimental parameters

    A Quantum Tweezer for Atoms

    Full text link
    We propose a quantum tweezer for extracting a desired number of neutral atoms from a reservoir. A trapped Bose-Einstein condensate (BEC) is used as the reservoir, taking advantage of its coherent nature, which can guarantee a constant outcome. The tweezer is an attractive quantum dot, which may be generated by red-detuned laser light. By moving with certain speeds, the dot can extract a desired number of atoms from the BEC through Landau-Zener tunneling. The feasibility of our quantum tweezer is demonstrated through realistic and extensive model calculations.Comment: 4 pages, 6 figures Revised versio

    Quantum Chaos of Bogoliubov Waves for a Bose-Einstein Condensate in Stadium Billiards

    Full text link
    We investigate the possibility of quantum (or wave) chaos for the Bogoliubov excitations of a Bose-Einstein condensate in billiards. Because of the mean field interaction in the condensate, the Bogoliubov excitations are very different from the single particle excitations in a non-interacting system. Nevertheless, we predict that the statistical distribution of level spacings is unchanged by mapping the non-Hermitian Bogoliubov operator to a real symmetric matrix. We numerically test our prediction by using a phase shift method for calculating the excitation energies.Comment: minor change, 4 pages, 4 figures, to appear in Phys. Rev. Let
    • …
    corecore