438 research outputs found

    Brain mechanisms associated with facial encoding of affective states

    Get PDF
    Affective states are typically accompanied by facial expressions, but these behavioral manifestations are highly variable. Even highly arousing and negative valent experiences, such as pain, show great instability in facial affect encoding. The present study investigated which neural mechanisms are associated with variations in facial affect encoding by focusing on facial encoding of sustained pain experiences. Facial expressions, pain ratings, and brain activity (BOLD-fMRI) during tonic heat pain were recorded in 27 healthy participants. We analyzed facial expressions by using the Facial Action Coding System (FACS) and examined brain activations during epochs of painful stimulation that were accompanied by facial expressions of pain. Epochs of facial expressions of pain were coupled with activity increase in motor areas (M1, premotor and SMA) as well as in areas involved in nociceptive processing, including primary and secondary somatosensory cortex, posterior and anterior insula, and the anterior part of the mid-cingulate cortex. In contrast, prefrontal structures (ventrolateral and medial prefrontal) were less activated during incidences of facial expressions, consistent with a role in down-regulating facial displays. These results indicate that incidences of facial encoding of pain reflect activity within nociceptive pathways interacting or possibly competing with prefrontal inhibitory systems that gate the level of expressiveness

    A new class of coherent states with Meixner-Pollaczek polynomials for the Gol'dman-Krivchenkov Hamiltonian

    Full text link
    A class of generalized coherent states with a new type of the identity resolution are constructed by replacing the labeling parameter zn/n! of the canonical coherent states by Meixner-Pollaczek polynomials with specific parameters. The constructed coherent states belong to the state Hilbert space of the Gol'dman-Krivchenkov Hamiltonian.Comment: 10 pages, Submitte

    Use of inverse PCR to amplify and sequence breakpoints of HPRT deletion and translocation mutations

    Full text link
    Deletion and translocation mutations have been shown to play a significant role in the genesis of many cancers. The hprt gene located at Xq26 is a frequently used marker gene in human mutational studies. In an attempt to better understand potential mutational mechanisms involved in deletions and translocations, inverse PCR (IPCR) methods to amplify and sequence the breakpoints of hprt mutants classified as translocations and large deletions were developed. IPCR involves the digestion of DNA with a restriction enzyme, circularization of the fragments produced, and PCR amplification around the circle with primers oriented in a direction opposite to that of conventional PCR. The use of this technique allows amplification into an unknown region, in this case through the hprt breakpoint into the unknown joined sequence. Through the use of this procedure, two translocation, one inversion, and two external deletion hprt breakpoint sequences were isolated and sequenced. The isolated IPCR products range in size from 0.4 to 1.8 kb, and were amplified from circles ranging in size from 0.6 to 7.7 kb. We have shown that inverse PCR is useful to sequence translocation and large deletion mutant breakpoints in the hprt gene. Environ. Mol. Mutagen. 39:22–32, 2002 © 2002 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/35019/1/10040_ftp.pd

    Solvable Systems of Linear Differential Equations

    Full text link
    The asymptotic iteration method (AIM) is an iterative technique used to find exact and approximate solutions to second-order linear differential equations. In this work, we employed AIM to solve systems of two first-order linear differential equations. The termination criteria of AIM will be re-examined and the whole theory is re-worked in order to fit this new application. As a result of our investigation, an interesting connection between the solution of linear systems and the solution of Riccati equations is established. Further, new classes of exactly solvable systems of linear differential equations with variable coefficients are obtained. The method discussed allow to construct many solvable classes through a simple procedure.Comment: 13 page

    Propagator of a Charged Particle with a Spin in Uniform Magnetic and Perpendicular Electric Fields

    Full text link
    We construct an explicit solution of the Cauchy initial value problem for the time-dependent Schroedinger equation for a charged particle with a spin moving in a uniform magnetic field and a perpendicular electric field varying with time. The corresponding Green function (propagator) is given in terms of elementary functions and certain integrals of the fields with a characteristic function, which should be found as an analytic or numerical solution of the equation of motion for the classical oscillator with a time-dependent frequency. We discuss a particular solution of a related nonlinear Schroedinger equation and some special and limiting cases are outlined.Comment: 17 pages, no figure

    Some Orthogonal Polynomials Arising from Coherent States

    Full text link
    We explore in this paper some orthogonal polynomials which are naturally associated to certain families of coherent states, often referred to as nonlinear coherent states in the quantum optics literature. Some examples turn out to be known orthogonal polynomials but in many cases we encounter a general class of new orthogonal polynomials for which we establish several qualitative results.Comment: 21 page

    Brain responses to hypnotic verbal suggestions predict pain modulation

    Get PDF
    Background: The effectiveness of hypnosis in reducing pain is well supported by the scientific literature. Hypnosis typically involves verbal suggestions but the mechanisms by which verbal contents are transformed into predictive signals to modulate perceptual processes remain unclear. We hypothesized that brain activity during verbal suggestions would predict the modulation of responses to acute nociceptive stimuli. Methods: Brain activity was measured using BOLD-fMRI in healthy participants while they listened to verbal suggestions of HYPERALGESIA, HYPOALGESIA, or NORMAL sensation (control) following a standardized hypnosis induction. Immediately after the suggestions, series of noxious electrical stimuli were administered to assess pain-related responses. Brain responses measured during the suggestions were then used to predict changes in pain-related responses using delayed regression analyses. Results: Listening to suggestions of HYPERALGESIA and HYPOALGESIA produced BOLD decreases (vs. control) in the parietal operculum (PO) and in the anterior midcingulate cortex (aMCC), and increases in the left parahippocampal gyrus (lPHG). Changes in activity in PO, aMCC and PHG during the suggestions predicted larger pain-evoked responses following the HYPERALGESIA suggestions in the anterior cingulate cortex (ACC) and the anterior insula (aINS), and smaller pain-evoked responses following the HYPOALGESIA suggestions in the ACC, aMCC, posterior insula (pINS) and thalamus. These changes in pain-evoked brain responses are consistent with the changes in pain perception reported by the participants in HYPERALGESIA and HYPOALGESIA, respectively. Conclusions: The fronto-parietal network (supracallosal ACC and PO) has been associated with self-regulation and perceived self-agency. Deactivation of these regions during suggestions is predictive of the modulation of brain responses to noxious stimuli in areas previously associated with pain perception and pain modulation. The response of the hippocampal complex may reflect its role in contextual learning, memory and pain anticipation/expectations induced by verbal suggestions of pain modulation. This study provides a basis to further explore the transformation of verbal suggestions into perceptual modulatory processes fundamental to hypnosis neurophenomenology. These findings are discussed in relation to predictive coding models

    Optimized Planar Penning Traps for Quantum Information Studies

    Full text link
    A one-electron qubit would offer a new option for quantum information science, including the possibility of extremely long coherence times. One-quantum cyclotron transitions and spin flips have been observed for a single electron in a cylindrical Penning trap. However, an electron suspended in a planar Penning trap is a more promising building block for the array of coupled qubits needed for quantum information studies. The optimized design configurations identified here promise to make it possible to realize the elusive goal of one trapped electron in a planar Penning trap for the first time - a substantial step toward a one-electron qubit

    Hypnotic automaticity in the brain at rest: an arterial spin labelling study

    Get PDF
    The feeling of automaticity reported by individuals undergoing a hypnotic procedure is an essential dimension of hypnosis phenomenology. In the present study, healthy participants rated their subjective experience of automaticity and resting-state arterial spin labelling (ASL) scans were acquired before and after a standard hypnotic induction (i.e., “neutral hypnosis”). The increase in perceived automaticity was positively associated with activity in the parietal operculum (PO) and seed-based coactivation analysis revealed additional associations in the anterior part of the supracallosal cingulate cortex (aMCC). This is consistent with the role of these regions in perceived self-agency and volition and demonstrates that these effects can be evidenced at rest, in the absence of overt motor challenges. Future studies should further examine if/how these changes in brain activity associated with automaticity might facilitate the responses to suggestions and contribute to clinical benefits of hypnosis. ©, Copyright © International Journal of Clinical and Experimental Hypnosis

    Observations of the cold wake of Typhoon Fanapi (2010)

    Get PDF
    Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 40 (2013): 316–321, doi:10.1029/2012GL054282.Several tens of thousands of temperature profiles are used to investigate the thermal evolution of the cold wake of Typhoon Fanapi, 2010. Typhoon Fanapi formed a cold wake in the Western North Pacific Ocean on 18 September characterized by a mixed layer that was >2.5 °C cooler than the surrounding water, and extending to >80 m, twice as deep as the preexisting mixed layer. The initial cold wake became capped after 4 days as a warm, thin surface layer formed. The thickness of the capped wake, defined as the 26 °C–27 °C layer, decreased, approaching the background thickness of this layer with an e-folding time of 23 days, almost twice the e-folding lifetime of the Sea Surface Temperature (SST) cold wake (12 days). The wake was advected several hundreds of kilometers from the storm track by a preexisting mesoscale eddy. The observations reveal new intricacies of cold wake evolution and demonstrate the challenges of describing the thermal structure of the upper ocean using sea surface information alone.This work is primarily supported by the U.S. Office of Naval Research, with additional support from the National Science Foundation and the National Science Council, Taiwan
    • …
    corecore