689 research outputs found

    Increasing subsequences and the hard-to-soft edge transition in matrix ensembles

    Get PDF
    Our interest is in the cumulative probabilities Pr(L(t) \le l) for the maximum length of increasing subsequences in Poissonized ensembles of random permutations, random fixed point free involutions and reversed random fixed point free involutions. It is shown that these probabilities are equal to the hard edge gap probability for matrix ensembles with unitary, orthogonal and symplectic symmetry respectively. The gap probabilities can be written as a sum over correlations for certain determinantal point processes. From these expressions a proof can be given that the limiting form of Pr(L(t) \le l) in the three cases is equal to the soft edge gap probability for matrix ensembles with unitary, orthogonal and symplectic symmetry respectively, thereby reclaiming theorems due to Baik-Deift-Johansson and Baik-Rains.Comment: LaTeX, 19 page

    Irreversibility in asymptotic manipulations of entanglement

    Get PDF
    We show that the process of entanglement distillation is irreversible by showing that the entanglement cost of a bound entangled state is finite. Such irreversibility remains even if extra pure entanglement is loaned to assist the distillation process.Comment: RevTex, 3 pages, no figures Result on indistillability of PPT states under pure entanglement catalytic LOCC adde

    Chronostar. II. Kinematic age and substructure of the Scorpius-Centaurus OB2 association

    Full text link
    The nearest region of massive star formation - the Scorpius-Centaurus OB2 association (Sco-Cen) - is a local laboratory ideally suited to the study of a wide range of astrophysical phenomena. Precision astrometry from the Gaia mission has expanded the census of this region by an order of magnitude. However, Sco-Cen's vastness and complex substructure make kinematic analysis of its traditional three regions, Upper Scorpius, Upper Centaurus-Lupus and Lower Centaurus-Crux, challenging. Here we use Chronostar, a Bayesian tool for kinematic age determination, to carry out a new kinematic decomposition of Sco-Cen using full 6-dimensional kinematic data. Our model identifies 8 kinematically distinct components consisting of 8,185 stars distributed in dense and diffuse groups, each with an independently-fit kinematic age; we verify that these kinematic estimates are consistent with isochronal ages. Both Upper Centaurus-Lupus and Lower Centaurus-Crux are split into two parts. The kinematic age of the component that includes PDS 70, one of the most well studied systems currently forming planets, is 15±\pm3 Myr.Comment: Submitted to MNRAS. 19 pages, 9 figure

    Pauli Exchange Errors in Quantum Computation

    Get PDF
    In many physically realistic models of quantum computation, Pauli exchange interactions cause a subset of two-qubit errors to occur as a first order effect of couplings within the computer, even in the absence of interactions with the computer's environment. We give an explicit 9-qubit code that corrects both Pauli exchange errors and all one-qubit errors.Comment: Final version accepted for publication in Phys. Rev. Let

    Distributed Entanglement

    Get PDF
    Consider three qubits A, B, and C which may be entangled with each other. We show that there is a trade-off between A's entanglement with B and its entanglement with C. This relation is expressed in terms of a measure of entanglement called the "tangle," which is related to the entanglement of formation. Specifically, we show that the tangle between A and B, plus the tangle between A and C, cannot be greater than the tangle between A and the pair BC. This inequality is as strong as it could be, in the sense that for any values of the tangles satisfying the corresponding equality, one can find a quantum state consistent with those values. Further exploration of this result leads to a definition of the "three-way tangle" of the system, which is invariant under permutations of the qubits.Comment: 13 pages LaTeX; references added, derivation of Eq. (11) simplifie

    Low-complexity quantum codes designed via codeword-stabilized framework

    Full text link
    We consider design of the quantum stabilizer codes via a two-step, low-complexity approach based on the framework of codeword-stabilized (CWS) codes. In this framework, each quantum CWS code can be specified by a graph and a binary code. For codes that can be obtained from a given graph, we give several upper bounds on the distance of a generic (additive or non-additive) CWS code, and the lower Gilbert-Varshamov bound for the existence of additive CWS codes. We also consider additive cyclic CWS codes and show that these codes correspond to a previously unexplored class of single-generator cyclic stabilizer codes. We present several families of simple stabilizer codes with relatively good parameters.Comment: 12 pages, 3 figures, 1 tabl

    Universal Distributions for Growth Processes in 1+1 Dimensions and Random Matrices

    Full text link
    We develop a scaling theory for KPZ growth in one dimension by a detailed study of the polynuclear growth (PNG) model. In particular, we identify three universal distributions for shape fluctuations and their dependence on the macroscopic shape. These distribution functions are computed using the partition function of Gaussian random matrices in a cosine potential.Comment: 4 pages, 3 figures, 1 table, RevTeX, revised version, accepted for publication in PR

    From Skew-Cyclic Codes to Asymmetric Quantum Codes

    Full text link
    We introduce an additive but not F4\mathbb{F}_4-linear map SS from F4n\mathbb{F}_4^{n} to F42n\mathbb{F}_4^{2n} and exhibit some of its interesting structural properties. If CC is a linear [n,k,d]4[n,k,d]_4-code, then S(C)S(C) is an additive (2n,22k,2d)4(2n,2^{2k},2d)_4-code. If CC is an additive cyclic code then S(C)S(C) is an additive quasi-cyclic code of index 22. Moreover, if CC is a module θ\theta-cyclic code, a recently introduced type of code which will be explained below, then S(C)S(C) is equivalent to an additive cyclic code if nn is odd and to an additive quasi-cyclic code of index 22 if nn is even. Given any (n,M,d)4(n,M,d)_4-code CC, the code S(C)S(C) is self-orthogonal under the trace Hermitian inner product. Since the mapping SS preserves nestedness, it can be used as a tool in constructing additive asymmetric quantum codes.Comment: 16 pages, 3 tables, submitted to Advances in Mathematics of Communication

    The Partition Function of Multicomponent Log-Gases

    Full text link
    We give an expression for the partition function of a one-dimensional log-gas comprised of particles of (possibly) different integer charge at inverse temperature {\beta} = 1 (restricted to the line in the presence of a neutralizing field) in terms of the Berezin integral of an associated non- homogeneous alternating tensor. This is the analog of the de Bruijn integral identities [3] (for {\beta} = 1 and {\beta} = 4) ensembles extended to multicomponent ensembles.Comment: 14 page

    Lower bound for the quantum capacity of a discrete memoryless quantum channel

    Get PDF
    We generalize the random coding argument of stabilizer codes and derive a lower bound on the quantum capacity of an arbitrary discrete memoryless quantum channel. For the depolarizing channel, our lower bound coincides with that obtained by Bennett et al. We also slightly improve the quantum Gilbert-Varshamov bound for general stabilizer codes, and establish an analogue of the quantum Gilbert-Varshamov bound for linear stabilizer codes. Our proof is restricted to the binary quantum channels, but its extension of to l-adic channels is straightforward.Comment: 16 pages, REVTeX4. To appear in J. Math. Phys. A critical error in fidelity calculation was corrected by using Hamada's result (quant-ph/0112103). In the third version, we simplified formula and derivation of the lower bound by proving p(Gamma)+q(Gamma)=1. In the second version, we added an analogue of the quantum Gilbert-Varshamov bound for linear stabilizer code
    • …
    corecore