756 research outputs found

    Self-Dual Codes

    Get PDF
    Self-dual codes are important because many of the best codes known are of this type and they have a rich mathematical theory. Topics covered in this survey include codes over F_2, F_3, F_4, F_q, Z_4, Z_m, shadow codes, weight enumerators, Gleason-Pierce theorem, invariant theory, Gleason theorems, bounds, mass formulae, enumeration, extremal codes, open problems. There is a comprehensive bibliography.Comment: 136 page

    Increasing Subsequences and the Classical Groups

    Get PDF
    We show that the moments of the trace of a random unitary matrix have combinatorial interpretations in terms of longest increasing subsequences of permutations. To be precise, we show that the 2n-th moment of the trace of a random k-dimensional unitary matrix is equal to the number of permutations of length n with no increasing subsequence of length greater than k. We then generalize this to other expectations over the unitary group, as well as expectations over the orthogonal and symplectic groups. In each case, the expectations count objects with restricted "increasing subsequence" length

    The invariants of the Clifford groups

    Get PDF
    The automorphism group of the Barnes-Wall lattice L_m in dimension 2^m (m not 3) is a subgroup of index 2 in a certain ``Clifford group'' C_m (an extraspecial group of order 2^(1+2m) extended by an orthogonal group). This group and its complex analogue CC_m have arisen in recent years in connection with the construction of orthogonal spreads, Kerdock sets, packings in Grassmannian spaces, quantum codes, Siegel modular forms and spherical designs. In this paper we give a simpler proof of Runge's 1996 result that the space of invariants for C_m of degree 2k is spanned by the complete weight enumerators of the codes obtained by tensoring binary self-dual codes of length 2k with the field GF(2^m); these are a basis if m >= k-1. We also give new constructions for L_m and C_m: let M be the Z[sqrt(2)]-lattice with Gram matrix [2, sqrt(2); sqrt(2), 2]. Then L_m is the rational part of the mth tensor power of M, and C_m is the automorphism group of this tensor power. Also, if C is a binary self-dual code not generated by vectors of weight 2, then C_m is precisely the automorphism group of the complete weight enumerator of the tensor product of C and GF(2^m). There are analogues of all these results for the complex group CC_m, with ``doubly-even self-dual code'' instead of ``self-dual code''.Comment: Latex, 24 pages. Many small improvement

    On Asymmetric Coverings and Covering Numbers

    Get PDF
    An asymmetric covering D(n,R) is a collection of special subsets S of an n-set such that every subset T of the n-set is contained in at least one special S with |S| - |T| <= R. In this paper we compute the smallest size of any D(n,1) for n <= 8. We also investigate ``continuous'' and ``banded'' versions of the problem. The latter involves the classical covering numbers C(n,k,k-1), and we determine the following new values: C(10,5,4) = 51, C(11,7,6,) =84, C(12,8,7) = 126, C(13,9,8)= 185 and C(14,10,9) = 259. We also find the number of nonisomorphic minimal covering designs in several cases.Comment: 11 page

    The Lattice of N-Run Orthogonal Arrays

    Get PDF
    If the number of runs in a (mixed-level) orthogonal array of strength 2 is specified, what numbers of levels and factors are possible? The collection of possible sets of parameters for orthogonal arrays with N runs has a natural lattice structure, induced by the ``expansive replacement'' construction method. In particular the dual atoms in this lattice are the most important parameter sets, since any other parameter set for an N-run orthogonal array can be constructed from them. To get a sense for the number of dual atoms, and to begin to understand the lattice as a function of N, we investigate the height and the size of the lattice. It is shown that the height is at most [c(N-1)], where c= 1.4039... and that there is an infinite sequence of values of N for which this bound is attained. On the other hand, the number of nodes in the lattice is bounded above by a superpolynomial function of N (and superpolynomial growth does occur for certain sequences of values of N). Using a new construction based on ``mixed spreads'', all parameter sets with 64 runs are determined. Four of these 64-run orthogonal arrays appear to be new.Comment: 28 pages, 4 figure
    • …
    corecore