29 research outputs found

    Automated time activity classification based on global positioning system (GPS) tracking data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Air pollution epidemiological studies are increasingly using global positioning system (GPS) to collect time-location data because they offer continuous tracking, high temporal resolution, and minimum reporting burden for participants. However, substantial uncertainties in the processing and classifying of raw GPS data create challenges for reliably characterizing time activity patterns. We developed and evaluated models to classify people's major time activity patterns from continuous GPS tracking data.</p> <p>Methods</p> <p>We developed and evaluated two automated models to classify major time activity patterns (i.e., indoor, outdoor static, outdoor walking, and in-vehicle travel) based on GPS time activity data collected under free living conditions for 47 participants (N = 131 person-days) from the Harbor Communities Time Location Study (HCTLS) in 2008 and supplemental GPS data collected from three UC-Irvine research staff (N = 21 person-days) in 2010. Time activity patterns used for model development were manually classified by research staff using information from participant GPS recordings, activity logs, and follow-up interviews. We evaluated two models: (a) a rule-based model that developed user-defined rules based on time, speed, and spatial location, and (b) a random forest decision tree model.</p> <p>Results</p> <p>Indoor, outdoor static, outdoor walking and in-vehicle travel activities accounted for 82.7%, 6.1%, 3.2% and 7.2% of manually-classified time activities in the HCTLS dataset, respectively. The rule-based model classified indoor and in-vehicle travel periods reasonably well (Indoor: sensitivity > 91%, specificity > 80%, and precision > 96%; in-vehicle travel: sensitivity > 71%, specificity > 99%, and precision > 88%), but the performance was moderate for outdoor static and outdoor walking predictions. No striking differences in performance were observed between the rule-based and the random forest models. The random forest model was fast and easy to execute, but was likely less robust than the rule-based model under the condition of biased or poor quality training data.</p> <p>Conclusions</p> <p>Our models can successfully identify indoor and in-vehicle travel points from the raw GPS data, but challenges remain in developing models to distinguish outdoor static points and walking. Accurate training data are essential in developing reliable models in classifying time-activity patterns.</p

    The Canadian Urban Environmental Health Research Consortium - A protocol for building a national environmental exposure data platform for integrated analyses of urban form and health

    Get PDF
    Background: Multiple external environmental exposures related to residential location and urban form including, air pollutants, noise, greenness, and walkability have been linked to health impacts or benefits. The Canadian Urban Environmental Health Research Consortium (CANUE) was established to facilitate the linkage of extensive geospatial exposure data to existing Canadian cohorts and administrative health data holdings. We hypothesize that this linkage will enable investigators to test a variety of their own hypotheses related to the interdependent associations of built environment features with diverse health outcomes encompassed by the cohorts and administrative data. Methods: We developed a protocol for compiling measures of built environment features that quantify exposure; vary spatially on the urban and suburban scale; and can be modified through changes in policy or individual behaviour to benefit health. These measures fall into six domains: air quality, noise, greenness, weather/climate, and transportation and neighbourhood factors; and will be indexed to six-digit postal codes to facilitate merging with health databases. Initial efforts focus on existing data and include estimates of air pollutants, greenness, temperature extremes, and neighbourhood walkability and socioeconomic characteristics. Key gaps will be addressed for noise exposure, with a new national model being developed, and for transportation-related exposures, with detailed estimates of truck volumes and diesel emissions now underway in selected cities. Improvements to existing exposure estimates are planned, primarily by increasing temporal and/or spatial resolution given new satellite-based sensors and more detailed national air quality modelling. Novel metrics are also planned for walkability and food environments, green space access and function and life-long climate-related exposures based on local climate zones. Critical challenges exist, for example, the quantity and quality of input data to many of the models and metrics has changed over time, making it difficult to develop and validate historical exposures. Discussion: CANUE represents a unique effort to coordinate and leverage substantial research investments and will enable a more focused effort on filling gaps in exposure information, improving the range of exposures quantified, their precision and mechanistic relevance to health. Epidemiological studies may be better able to explore the common theme of urban form and health in an integrated manner, ultimately contributing new knowledge informing policies that enhance healthy urban living
    corecore