20 research outputs found
RNA-binding proteins regulate aldosterone homeostasis in human steroidogenic cells
Angiotensin II (AngII) stimulates adrenocortical cells to produce aldosterone, a master regulator of blood pressure. Despite extensive characterization of the transcriptional and enzymatic control of adrenocortical steroidogenesis, there are still major gaps in the precise regulation of AII-induced gene expression kinetics. Specifically, we do not know the regulatory contribution of RNA-binding proteins (RBPs) and RNA decay, which can control the timing of stimulus-induced gene expression. To investigate this question, we performed a high-resolution RNA-seq time course of the AngII stimulation response and 4-thiouridine pulse labeling in a steroidogenic human cell line (H295R). We identified twelve temporally distinct gene expression responses that contained mRNA encoding proteins known to be important for various steps of aldosterone production, such as cAMP signaling components and steroidogenic enzymes. AngII response kinetics for many of these mRNAs revealed a coordinated increase in both synthesis and decay. These findings were validated in primary human adrenocortical cells stimulated ex vivo with AngII. Using a candidate screen, we identified a subset of RNA-binding protein and RNA decay factors that activate or repress AngII-stimulated aldosterone production. Among the repressors of aldosterone were BTG2, which promotes deadenylation and global RNA decay. BTG2 was induced in response to AngII stimulation and promoted the repression of mRNAs encoding pro-steroidogenic factors indicating the existence of an incoherent feedforward loop controlling aldosterone homeostasis. These data support a model in which coordinated increases in transcription and decay facilitate the major transcriptomic changes required to implement a pro-steroidogenic expression program that actively resolved to prevent aldosterone overproduction
Recommended from our members
Fuel-cycle costs for alternative fuels
This paper compares the fuel cycle cost and fresh fuel requirements for a range of nuclear reactor systems including the present day LWR without fuel recycle, an LWR modified to obtain a higher fuel burnup, an LWR using recycle uranium and plutonium fuel, an LWR using a proliferation resistant /sup 233/U-Th cycle, a heavy water reactor, a couple of HTGRs, a GCFR, and several LMFBRs. These reactor systems were selected from a set of 26 developed for the NASAP study and represent a wide range of fuel cycle requirements
Recommended from our members
Back-end costs of alternative nuclear fuel cycles
As part of its charter, the Alternate Fuel Cycle Evaluation Program (AFCEP) was directed to evaluate the back-end of the nuclear fuel cycle in support of the Nonproliferation Alternative Systems Assessment Program (NASAP). The principal conclusion from this study is that the costs for recycling a broad range of reactor fuels will not have a large impact on total fuel cycle costs. For the once-through fuel cycle, the costs of fresh fuel fabrication, irradiated fuel storage, and associated transportation is about 1.2 to 1.3 mills/kWh. For the recycle of uranium and plutonium into thermal reactors, the back-cycle costs (i.e., the costs of irradiated fuel storage, transportation, reprocessing, refabrication, and waste disposal) will be from 3 to 3.5 mills/kWh. The costs for the recycle of uranium and plutonium into fast breeder reactors will be from 4.5 to 5 mills/kWh. Using a radioactive spikant or a denatured /sup 233/U-Th cycle will increase power costs for both recycle cases by about 1 mill/kWh. None of these costs substantially influence the total cost of nuclear power, which is in the range of 4 cents/kWh. The fuel cycle costs used in this study do not include costs incurred prior to fuel fabrication; that is, the cost of the uranium or thorium, the costs for enrichment, or credit for fissile materials in the discharged fuel, which is not recycled with the system
Expression and functional role of the prorenin receptor in the human adrenocortical zona glomerulosa and in primary aldosteronism.
OBJECTIVES: Prorenin can be detected in plasma of hypertensive patients. If detected in patients with primary aldosteronism could implicate prorenin in the development of primary aldosteronism. To address this issue, we measured the plasma prorenin levels in primary aldosteronism patients, the expression of the prorenin receptor (PRR) in the normal human adrenocortical zona glomerulosa and aldosterone-producing adenoma (APA), and we investigated the functional effects of PRR activation in human adrenocortical cells.
METHOD: Plasma renin activity, aldosterone, and active and total trypsin-activated renin were measured in primary aldosteronism patients, essential hypertensive patients, and healthy individuals, and then prorenin levels were calculated. Localization and functional role of PRR were investigated in human and rat tissues, and aldosterone-producing cells.
RESULTS: Primary aldosteronism patients had detectable plasma levels of prorenin. Using digital-droplet real-time PCR, we found a high PRR-to-porphobilinogen deaminase ratio in both the normal adrenal cortex and APAs. Marked expression of the PRR gene and protein was also found in HAC15 cells. Immunoblotting, confocal, and immunogold electron microscopy demonstrated PRR at the cell membrane and intracellularly. Renin and prorenin significantly triggered both CYP11B2 expression (aldosterone synthase) and ERK1/2 phosphorylation, but only CYP11B2 transcription was prevented by aliskiren.
CONCLUSION: The presence of detectable plasma prorenin in primary aldosteronism patients, and the high expression of PRR in the normal human adrenal cortex, APA tissue, CD56+ aldosterone-producing cells, along with activation of CYP11B2 synthesis and ERK1/2 phosphorylation, suggest that the circulating and locally produced prorenin may contribute to the development or maintenance of human primary aldosteronism