131 research outputs found
3D cell cultures, as a surrogate for animal models, enhance the diagnostic value of preclinical in vitro investigations by adding information on the tumour microenvironment : a comparative study of new dual-mode HDAC inhibitors
Anchorage-independent 3D-cultures of multicellular tumour spheroids (MCTS) and in vitro microtumours of cancer cells can provide upfront information on the effects of anticancer drug candidates, tantamount to that obtained from animal xenograft studies. Unlike 2D cancer cell cultures, 3D-models take into account the influence of the tumour microenvironment and the location dependence of drug effects and accumulation. We exemplified this by comparison of the effects of two new dual-mode anticancer agents, Troxbam and Troxham, and their monomodal congeners SAHA (suberoylanilide hydroxamic acid) and CA-4 (combretastatin A-4). We assessed the growth of MCTS of HCT116(wt) human colon carcinoma cells exposed to these compounds, as well as the spatial distribution of dead HCT116(wt) cells in these MCTS. Also, fluorescence imaging of live and fixed MCTS was used to assess the type of cellular death induced by test compounds. Furthermore, an innovative perfusion bioreactor system was used to grow microtumours in the presence or absence of test compounds. Both new investigational compounds led to significant reductions of the size of such MCTS and also of corresponding in vitro microtumours by inducing caspase-9 dependent apoptosis and elevated levels of reactive oxygen species. 3D multicellular tumour spheroids are easy to grow and employ for compound tests in the familiar well-plate set-up. Together with 3D microtumours grown at scaffolds in continuously perfused bioreactors they allow to study, early on in the course of drug evaluations, the communication of tumour cells with their microenvironment to an extent hitherto available only in animal experiments. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10637-022-01280-0
Syntheses and Biofilm Reducing Effects of l-Dopa-Derived Analogues of the Fungal Macrocidins A and Z
Syntheses of combretastatins D-1, D-2, and D-4 via ring contraction by flash vacuum pyrolysis
We report the syntheses of combretastatins D-2 and D-4 as well as a formal synthesis of combretastatin D-1 by a conceptually new route harnessing a ring-contracting flash vacuum pyrolytic extrusion of sulfur dioxide from the respective 16-membered sulfone precursors. Via flash vacuum pyrolysis, even metaparacyclophanes as small and strained as the hitherto unknown oxa[1.5]metaparacyclophane could be prepared as a side product en route to combretastatin D-2 by synchronous extrusion of SO2 and CO2.PostprintPeer reviewe
Revisiting the anticancer properties of phosphane(9-ribosylpurine-6-thiolato)gold(I) complexes and their 9H-purine precursors
New mono- and di-nuclear thio-purine and thio-purine nucleoside gold(I) complexes were synthesized, characterized, and evaluated in vitro for biological activities in comparison to related known purine complexes. By combining known anti-tumoral thio-purines with R(3)PAu moieties as present in auranofin, complexes with enhanced effects and selectivities were obtained, which not only act as cytostatics, but also disrupt tumor-specific processes. Their IC(50) values in cytotoxicity test with tumor cell lines ranged from three-digit nanomolar to single-digit micromolar, revealing a tentative structureâactivity relationship (SAR). Both the residues R(2) of the phosphane ligand and R(1) at C2 of the pyrimidine ring had a significant impact on the cytotoxicity. In most cases, the introduction of a ribo-furanosyl group at N9 of the purine led to a distinctly more cytotoxic complex. Most complexes were more active against multi-drug-resistant tumor cells or such lacking functional p53 when compared to the respective untreated wild type cell lines. Some nucleoside complexes displayed an interesting dose-dependent dual mode of action regarding cell cycle arrest and DNA repair mechanism. Some phosphane(purine-6-thiolato)gold (I) complexes had a stronger inhibitory effect on the thioredoxin reductase (TrxR) and on the reactive oxygen species (ROS) generation in cancer cells than is typical of other gold complexes. They also led to DNA fragmentation and showed anti-angiogenic effects. Their stability under test conditions was demonstrated by (77)Se NMR monitoring of an exemplary selenopurine complex. GRAPHICAL ABSTRACT: [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00775-022-01968-x
2-Amino-4-aryl-5-oxo-4,5-dihydropyrano[3,2-c]chromene-3-carbonitriles with Microtubule-Disruptive, Centrosome-Declustering, and Antiangiogenic Effects in vitro and in vivo
A series of fifteen 2âaminoâ4âarylâ5âoxoâ4,5âdihydropyrano[3,2âc]chromeneâ3âcarbonitriles (1âaâo) were synthesized via a threeâcomponent reaction of 4âhydroxycoumarin, malononitrile, and diversely substituted benzaldehydes or pyridine carbaldehydes. The compounds were tested for anticancer activities against a panel of eight human tumor cell lines. A few derivatives with high antiproliferative activities and different cancer cell specificity were identified and investigated for their modes of action. They led to microtubule disruption, centrosome deâclustering and G2/M cell cycle arrest in 518â
A2 melanoma cells. They also showed antiâangiogenic effects inâ
vitro and inâ
vivo
- âŠ