7 research outputs found

    Improved identification of conserved cassette exons using Bayesian networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Alternative splicing is a major contributor to the diversity of eukaryotic transcriptomes and proteomes. Currently, large scale detection of alternative splicing using expressed sequence tags (ESTs) or microarrays does not capture all alternative splicing events. Moreover, for many species genomic data is being produced at a far greater rate than corresponding transcript data, hence <it>in silico </it>methods of predicting alternative splicing have to be improved.</p> <p>Results</p> <p>Here, we show that the use of Bayesian networks (BNs) allows accurate prediction of evolutionary conserved exon skipping events. At a stringent false positive rate of 0.5%, our BN achieves an improved true positive rate of 61%, compared to a previously reported 50% on the same dataset using support vector machines (SVMs). Incorporating several novel discriminative features such as intronic splicing regulatory elements leads to the improvement. Features related to mRNA secondary structure increase the prediction performance, corroborating previous findings that secondary structures are important for exon recognition. Random labelling tests rule out overfitting. Cross-validation on another dataset confirms the increased performance. When using the same dataset and the same set of features, the BN matches the performance of an SVM in earlier literature. Remarkably, we could show that about half of the exons which are labelled constitutive but receive a high probability of being alternative by the BN, are in fact alternative exons according to the latest EST data. Finally, we predict exon skipping without using conservation-based features, and achieve a true positive rate of 29% at a false positive rate of 0.5%.</p> <p>Conclusion</p> <p>BNs can be used to achieve accurate identification of alternative exons and provide clues about possible dependencies between relevant features. The near-identical performance of the BN and SVM when using the same features shows that good classification depends more on features than on the choice of classifier. Conservation based features continue to be the most informative, and hence distinguishing alternative exons from constitutive ones without using conservation based features remains a challenging problem.</p

    BioBayesNet: a web server for feature extraction and Bayesian network modeling of biological sequence data

    Get PDF
    BioBayesNet is a new web application that allows the easy modeling and classification of biological data using Bayesian networks. To learn Bayesian networks the user can either upload a set of annotated FASTA sequences or a set of pre-computed feature vectors. In case of FASTA sequences, the server is able to generate a wide range of sequence and structural features from the sequences. These features are used to learn Bayesian networks. An automatic feature selection procedure assists in selecting discriminative features, providing an (locally) optimal set of features. The output includes several quality measures of the overall network and individual features as well as a graphical representation of the network structure, which allows to explore dependencies between features. Finally, the learned Bayesian network or another uploaded network can be used to classify new data. BioBayesNet facilitates the use of Bayesian networks in biological sequences analysis and is flexible to support modeling and classification applications in various scientific fields. The BioBayesNet server is available at http://biwww3.informatik.uni-freiburg.de:8080/BioBayesNet/

    Using RNA secondary structures to guide sequence motif finding towards single-stranded regions

    Get PDF
    RNA binding proteins recognize RNA targets in a sequence specific manner. Apart from the sequence, the secondary structure context of the binding site also affects the binding affinity. Binding sites are often located in single-stranded RNA regions and it was shown that the sequestration of a binding motif in a double-strand abolishes protein binding. Thus, it is desirable to include knowledge about RNA secondary structures when searching for the binding motif of a protein. We present the approach MEMERIS for searching sequence motifs in a set of RNA sequences and simultaneously integrating information about secondary structures. To abstract from specific structural elements, we precompute position-specific values measuring the single-strandedness of all substrings of an RNA sequence. These values are used as prior knowledge about the motif starts to guide the motif search. Extensive tests with artificial and biological data demonstrate that MEMERIS is able to identify motifs in single-stranded regions even if a stronger motif located in double-strand parts exists. The discovered motif occurrences in biological datasets mostly coincide with known protein-binding sites. This algorithm can be used for finding the binding motif of single-stranded RNA-binding proteins in SELEX or other biological sequence data

    BIOINFORMATICS ORIGINAL PAPER Sequence analysis

    No full text
    doi:10.1093/bioinformatics/bti477 A multiple-feature framework for modelling and predicting transcription factor binding site
    corecore