315 research outputs found
Chemical evolution of the metal poor Globular Cluster NGC 6809
We present the abundances analysis for a sample of 11 red giant branch stars
in the metal-poor globular cluster NGC 6809 based on high-resolution spectra.
Our main goals are to characterize its chemical composition and analyze this
cluster's behavior associated with the Multiple Population (MPs) phenomenon. In
our work we obtained the stellar parameters and chemical abundances of 24
elements (O, Na, Mg, Al, Si, Ca, Ti, V, Cr, Mn, Fe, Co, Sc, Ni, Cu, Zn, Y, Zr,
Ba, La, Ce, Eu, Nd and Dy). We found a radial velocity of 174.7 3.2 km
and a mean iron content of [Fe/H]=-2.01 0.02 in good agreement
with other studies. Moreover, we found a large spread in the abundances of the
light elements O, Na and Al confirming the presence of a Na-O anti-correlation
a Na-Al correlation. The Mg-Al anti-correlation is also present in our cluster.
The and iron-peak elements show good agreement with the halo field
star trend. The heavy elements are dominated by the r-process.Comment: 13 pages, 11 figures, 3 tables, accepted for publication in MNRA
Recommended from our members
Space charge behaviour in epoxy laminates under high constant electric field
The development of space charge in insulating materials is one of the main causes of their electrical ageing. The pulsed electro-acoustic method is often used to determine space charge distribution, but the signal analysis in the case of laminate structures is much more complex to analyse. In this paper the authors describe and use a simulated signal in order to study laminates made of epoxy resin and fibre mat. The relatively large conductivity of the fibres compared with that of the resin seems to produce a rapid charge dissociation and recombination in the fibres. Under voltage the presence of fibres close to an electrode seems to promote charge injection
Recovering 3D structural properties of galaxies from SDSS-like photometry
Because of the 3D nature of galaxies, an algorithm for constructing spatial
density distribution models of galaxies on the basis of galaxy images has many
advantages over surface density distribution approximations. We present a
method for deriving spatial structure and overall parameters of galaxies from
images and estimate its accuracy and derived parameter degeneracies on a sample
of idealised model galaxies. The test galaxies consist of a disc-like component
and a spheroidal component with varying proportions and properties. Both
components are assumed to be axially symmetric and coplanar. We simulate these
test galaxies as if observed in the SDSS project through ugriz filters, thus
gaining a set of realistically imperfect images of galaxies with known
intrinsic properties. These artificial SDSS galaxies were thereafter remodelled
by approximating the surface brightness distribution with a 2D projection of a
bulge+disc spatial distribution model and the restored parameters were compared
to the initial ones. Down to the r-band limiting magnitude 18, errors of the
restored integral luminosities and colour indices remain within 0.05 mag and
errors of the luminosities of individual components within 0.2 mag. Accuracy of
the restored bulge-to-disc ratios (B/D) is within 40% in most cases, and
becomes worse for galaxies with low B/D, but the general balance between bulges
and discs is not shifted systematically. Assuming that the intrinsic disc axial
ratio is < 0.3, the inclination angles can be estimated with errors < 5deg for
most of the galaxies with B/D < 2 and with errors < 15deg up to B/D = 6. Errors
of the recovered sizes of the galactic components are below 10% in most cases.
In general, models of disc components are more accurate than models of
spheroidal components for geometrical reasons.Comment: 15 pages, 13 figures, accepted for publication in RA
Infinite-Order Percolation and Giant Fluctuations in a Protein Interaction Network
We investigate a model protein interaction network whose links represent
interactions between individual proteins. This network evolves by the
functional duplication of proteins, supplemented by random link addition to
account for mutations. When link addition is dominant, an infinite-order
percolation transition arises as a function of the addition rate. In the
opposite limit of high duplication rate, the network exhibits giant structural
fluctuations in different realizations. For biologically-relevant growth rates,
the node degree distribution has an algebraic tail with a peculiar rate
dependence for the associated exponent.Comment: 4 pages, 2 figures, 2 column revtex format, to be submitted to PRL 1;
reference added and minor rewording of the first paragraph; Title change and
major reorganization (but no result changes) in response to referee comments;
to be published in PR
Two-tape finite automata with quantum and classical states
{\it Two-way finite automata with quantum and classical states} (2QCFA) were
introduced by Ambainis and Watrous, and {\it two-way two-tape deterministic
finite automata} (2TFA) were introduced by Rabin and Scott. In this paper we
study 2TFA and propose a new computing model called {\it two-way two-tape
finite automata with quantum and classical states} (2TQCFA). First, we give
efficient 2TFA algorithms for recognizing languages which can be recognized by
2QCFA. Second, we give efficient 2TQCFA algorithms to recognize several
languages whose status vis-a-vis 2QCFA have been posed as open questions, such
as . Third, we show that
can be recognized by {\it -tape
deterministic finite automata} (TFA). Finally, we introduce {\it
-tape automata with quantum and classical states} (TQCFA) and prove that
can be recognized by TQCFA.Comment: 25 page
Recommended from our members
Terahertz emission from the intrinsic Josephson junctions of high-symmetry thermally-managed Bi2Sr2CaCu2O8+δ microstrip antennas
We show for high-symmetry disk, square, or equilateral triangular thin microstrip antennas of any composition respectively obeying C∞v, C4v, and C3v point group symmetries, that the transverse magnetic electromagnetic cavity mode wave functions are restricted in form to those that are one-dimensional representations of those point groups. Plots of the common nodal points of the ten lowest-energy non-radiating two-dimensional representations of each of these three symmetries are presented. For comparison with symmetry-broken disk intrinsic Josephson junction microstrip antennas constructed from the highly anisotropic layered superconductor Bi2 Sr2 CaCu2 O8+δ (BSCCO), we present plots of the ten lowest frequency orthonormal wave functions and of their emission power angular distributions. These results are compared with previous results for square and equilateral triangular thin microstrip antennas
The dynamics of measles in sub-Saharan Africa.
Although vaccination has almost eliminated measles in parts of the world, the disease remains a major killer in some high birth rate countries of the Sahel. On the basis of measles dynamics for industrialized countries, high birth rate regions should experience regular annual epidemics. Here, however, we show that measles epidemics in Niger are highly episodic, particularly in the capital Niamey. Models demonstrate that this variability arises from powerful seasonality in transmission-generating high amplitude epidemics-within the chaotic domain of deterministic dynamics. In practice, this leads to frequent stochastic fadeouts, interspersed with irregular, large epidemics. A metapopulation model illustrates how increased vaccine coverage, but still below the local elimination threshold, could lead to increasingly variable major outbreaks in highly seasonally forced contexts. Such erratic dynamics emphasize the importance both of control strategies that address build-up of susceptible individuals and efforts to mitigate the impact of large outbreaks when they occur
Rhomboid family member 2 regulates cytoskeletal stress-associated Keratin 16.
Keratin 16 (K16) is a cytoskeletal scaffolding protein highly expressed at pressure-bearing sites of the mammalian footpad. It can be induced in hyperproliferative states such as wound healing, inflammation and cancer. Here we show that the inactive rhomboid protease RHBDF2 (iRHOM2) regulates thickening of the footpad epidermis through its interaction with K16. K16 expression is absent in the thinned footpads of irhom2-/- mice compared with irhom2+/+mice, due to reduced keratinocyte proliferation. Gain-of-function mutations in iRHOM2 underlie Tylosis with oesophageal cancer (TOC), characterized by palmoplantar thickening, upregulate K16 with robust downregulation of its type II keratin binding partner, K6. By orchestrating the remodelling and turnover of K16, and uncoupling it from K6, iRHOM2 regulates the epithelial response to physical stress. These findings contribute to our understanding of the molecular mechanisms underlying hyperproliferation of the palmoplantar epidermis in both physiological and disease states, and how this 'stress' keratin is regulated
Recommended from our members
Downregulated Wnt/β-catenin signalling in the Down syndrome hippocampus
Pathological mechanisms underlying Down syndrome (DS)/Trisomy 21, including dysregulation of essential signalling processes remain poorly understood. Combining bioinformatics with RNA and protein analysis, we identified downregulation of the Wnt/β-catenin pathway in the hippocampus of adult DS individuals with Alzheimer’s disease and the ‘Tc1’ DS mouse model. Providing a potential underlying molecular pathway, we demonstrate that the chromosome 21 kinase DYRK1A regulates Wnt signalling via a novel bimodal mechanism. Under basal conditions, DYRK1A is a negative regulator of Wnt/β-catenin. Following pathway activation, however, DYRK1A exerts the opposite effect, increasing signalling activity. In summary, we identified downregulation of hippocampal Wnt/β-catenin signalling in DS, possibly mediated by a dose dependent effect of the chromosome 21-encoded kinase DYRK1A. Overall, we propose that dosage imbalance of the Hsa21 gene DYRK1A affects downstream Wnt target genes. Therefore, modulation of Wnt signalling may open unexplored avenues for DS and Alzheimer’s disease treatment
Lethality and centrality in protein networks
In this paper we present the first mathematical analysis of the protein
interaction network found in the yeast, S. cerevisiae. We show that, (a) the
identified protein network display a characteristic scale-free topology that
demonstrate striking similarity to the inherent organization of metabolic
networks in particular, and to that of robust and error-tolerant networks in
general. (b) the likelihood that deletion of an individual gene product will
prove lethal for the yeast cell clearly correlates with the number of
interactions the protein has, meaning that highly-connected proteins are more
likely to prove essential than proteins with low number of links to other
proteins. These results suggest that a scale-free architecture is a generic
property of cellular networks attributable to universal self-organizing
principles of robust and error-tolerant networks and that will likely to
represent a generic topology for protein-protein interactions.Comment: See also http:/www.nd.edu/~networks and
http:/www.nd.edu/~networks/cel
- …