20 research outputs found

    Avatar-based patient monitoring improves information transfer, diagnostic confidence and reduces perceived workload in intensive care units: computer-based, multicentre comparison study

    Get PDF
    Patient monitoring is the foundation of intensive care medicine. High workload and information overload can impair situation awareness of staff, thus leading to loss of important information about patients’ conditions. To facilitate mental processing of patient monitoring data, we developed the Visual-Patient-avatar Intensive Care Unit (ICU), a virtual patient model animated from vital signs and patient installation data. It incorporates user-centred design principles to foster situation awareness. This study investigated the avatar’s effects on information transfer measured by performance, diagnostic confidence and perceived workload. This computer-based study compared Visual-Patient-avatar ICU and conventional monitor modality for the first time. We recruited 25 nurses and 25 physicians from five centres. The participants completed an equal number of scenarios in both modalities. Information transfer, as the primary outcome, was defined as correctly assessing vital signs and installations. Secondary outcomes included diagnostic confidence and perceived workload. For analysis, we used mixed models and matched odds ratios. Comparing 250 within-subject cases revealed that Visual-Patient-avatar ICU led to a higher rate of correctly assessed vital signs and installations [rate ratio (RR) 1.25; 95% CI 1.19–1.31; P < 0.001], strengthened diagnostic confidence [odds ratio (OR) 3.32; 95% CI 2.15–5.11, P < 0.001] and lowered perceived workload (coefficient − 7.62; 95% CI − 9.17 to − 6.07; P < 0.001) than conventional modality. Using Visual-Patient-avatar ICU, participants retrieved more information with higher diagnostic confidence and lower perceived workload compared to the current industry standard monitor

    User Perceptions of Avatar-Based Patient Monitoring for Intensive Care Units: An International Exploratory Sequential Mixed-Methods Study

    Get PDF
    Visual Patient Avatar ICU is an innovative approach to patient monitoring, enhancing the user’s situation awareness in intensive care settings. It dynamically displays the patient’s current vital signs using changes in color, shape, and animation. The technology can also indicate patient-inserted devices, such as arterial lines, central lines, and urinary catheters, along with their insertion locations. We conducted an international, multi-center study using a sequential qualitative-quantitative design to evaluate users’ perception of Visual Patient Avatar ICU among physicians and nurses. Twenty-five nurses and twenty-five physicians from the ICU participated in the structured interviews. Forty of them completed the online survey. Overall, ICU professionals expressed a positive outlook on Visual Patient Avatar ICU. They described Visual Patient Avatar ICU as a simple and intuitive tool that improved information retention and facilitated problem identification. However, a subset of participants expressed concerns about potential information overload and a sense of incompleteness due to missing exact numerical values. These findings provide valuable insights into user perceptions of Visual Patient Avatar ICU and encourage further technology development before clinical implementation

    User Perceptions of Visual Blood: An International Mixed Methods Study on Novel Blood Gas Analysis Visualization

    Get PDF
    Blood gas analysis plays a central role in modern medicine. Advances in technology have expanded the range of available parameters and increased the complexity of their interpretation. By applying user-centered design principles, it is possible to reduce the cognitive load associated with interpreting blood gas analysis. In this international, multicenter study, we explored anesthesiologists’ perspectives on Visual Blood, a novel visualization technique for presenting blood gas analysis results. We conducted interviews with participants following two computer-based simulation studies, the first utilizing virtual reality (VR) (50 participants) and the second without VR (70 participants). Employing the template approach, we identified key themes in the interview responses and formulated six statements, which were rated using Likert scales from 1 (strongly disagree) to 5 (strongly agree) in an online questionnaire. The most frequently mentioned theme was the positive usability features of Visual Blood. The online survey revealed that participants found Visual Blood to be an intuitive method for interpreting blood gas analysis (median 4, interquartile range (IQR) 4-4, p < 0.001). Participants noted that minimal training was required to effectively learn how to interpret Visual Blood (median 4, IQR 4-4, p < 0.001). However, adjustments are necessary to reduce visual overload (median 4, IQR 2-4, p < 0.001). Overall, Visual Blood received a favorable response. The strengths and weaknesses derived from these data will help optimize future versions of Visual Blood to improve the presentation of blood gas analysis results

    The visually estimated blood volume in scaled canisters based on a simulation study

    No full text
    Background: The most common technique used worldwide to quantify blood loss during an operation is the visual assessment by the attending intervention team. In every operating room you will find scaled suction canisters that collect fluids from the surgical field. This scaling is commonly used by clinicians for visual assessment of intraoperative blood loss. While many studies have been conducted to quantify and improve the inaccuracy of the visual estimation method, research has focused on the estimation of blood volume in surgical drapes. The question whether and how scaling of canisters correlates with actual blood loss and how accurately clinicians estimate blood loss in scaled canisters has not been the focus of research to date. Methods: A simulation study with four “bleeding” scenarios was conducted using expired whole blood donations. After diluting the blood donations with full electrolyte solution, the sample blood loss volume (SBL) was transferred into suction canisters. The study participants then had to estimate the blood loss in all four scenarios. The difference to the reference blood loss (RBL) per scenario was analyzed. Results: Fifty-three anesthetists participated in the study. The median estimated blood loss was 500 ml (IQR 300/1150) compared to the RBL median of 281.5 ml (IQR 210.0/1022.0). Overestimations up to 1233 ml were detected. Underestimations were also observed in the range of 138 ml. The visual estimate for canisters correlated moderately with RBL (Spearman’s rho: 0.818; p < 0.001). Results from univariate nonparametric confirmation statistics regarding visual estimation of canisters show that the deviation of the visual estimate of blood loss is significant (z = − 10.95, p < 0.001, n = 220). Participants’ experience level had no significant influence on VEBL (p = 0.402). Conclusion: The discrepancies between the visual estimate of canisters and the actual blood loss are enormous despite the given scales. Therefore, we do not recommend estimating the blood loss visually in scaled suction canisters. Colorimetric blood loss estimation could be a more accurate option

    Total intravenous anesthesia in GLUT1 deficiency syndrome patient : a case report

    No full text
    Background: GLUT1-deficiency-syndrome (G1DS) is an autosomal dominant genetic disorder based on a mutation of the SLC2A1 gene. This mutation can lead to an encephalopathy due to abnormal glucose transport in the brain. G1DS is a rare disease, with an estimated incidence of 1: 90 000. Case report: We report a case of a 10-year-old female who presented with recurrent fever, headaches, and vertigo for more than 3 days within 2 weeks following pneumonia. A bilateral mastoiditis was proven by a cerebral magnetic resonance imaging and a cranial computed tomography scan. The patient had to undergo mastoidectomy and thus, her first general anesthesia. Half a year previously she was diagnosed with G1DS. According to the standard of care, a ketogenic diet had been administered since the patient’s diagnosis 6 months earlier. Our patient received a total intravenous anesthesia (TIVA) using propofol, fentanyl, and rocuronium administered without any incidents. Conclusions: We recommend normoglycemia during the perioperative phase and avoidance of glucose-based medication to keep a patient’s ketotic state. Our case highlights that TIVA, with the outlined medication used in this case, was safe when the patient’s ketotic state and periprocedural blood glucose was monitored continuously. Nevertheless, we would suggest using remifentanil instead of fentanyl for future TIVAs due to a reduced increase in blood glucose level in our patient

    Characterization of neonates born to mothers with SARS-CoV-2 infection: review and meta-analysis

    No full text
    Characterization of neonates born to mothers with SARS-CoV-2 infection has been partially carried out. There has been no systematic review providing a holistic neonatal presentation including possible vertical transmission. A systematic literature search was performed using PubMed, Google Scholar and Web of Science up to June, 6 2020. Studies on neonates born to mothers with SARS-CoV-2 infection were included. A binary random effect model was used for prevalence and 95% confidence interval. 32 studies involving 261 neonates were included in meta-analysis. Most neonates born to infected mothers did not show any clinical abnormalities (80.4%). Clinical features were dyspnea in 11 (42.3%) and fever in 9 newborns (19.1%). Of 261 neonates, 120 neonates were tested for infection, of whom 12 (10.0%) tested positive. Swabs from placenta, cord blood and vaginal secretion were negative. Neonates are mostly non affected by the mother's SARS-CoV-2 infection. The risk of vertical transmission is low

    Do we visually estimate intra-operative blood loss better with white or green sponges and is the deviation from the real blood loss clinically acceptable? Results from a simulated scenario study

    No full text
    Background: The intraoperative blood loss is estimated daily in the operating room and is mainly done by visual techniques. Due to local standards, the surgical sponge colours can vary (e.g. white in US, green in Germany). The influence of sponge colour on accuracy of estimation has not been in the focus of research yet. Material and methods: A blood loss simulation study containing four “bleeding” scenarios each per sponge colour were created by using expired whole blood donation samples. The blood donations were applied to white and green surgical sponges after dilution with full electrolyte solution. Study participants had to estimate the absorbed blood loss in sponges in all scenarios. The difference to the reference blood loss was analysed. Multivariate linear regression analysis was performed to investigate other influence factors such as staff experience and sponge colour. Results: A total of 53 anaesthesists participated in the study. Visual estimation correlated moderately with reference blood loss in white (Spearman's rho: 0.521; p = 3.748*10−16) and green sponges (Spearman's rho: 0.452; p = 4.683*10−12). The median visually estimated blood loss was higher in white sponges (250ml IRQ 150–412.5ml) than in green sponges (150ml IQR 100-300ml), compared to reference blood loss (103ml IQR 86–162.8). For both colour types of sponges, major under- and overestimation was observed. The multivariate statistics demonstrates that fabric colours have a significant influence on estimation (p = 3.04*10−10), as well as clinician’s qualification level (p = 2.20*10−10, p = 1.54*10−08) and amount of RBL to be estimated (p < 2*10−16). Conclusion: The deviation of correct blood loss estimation was smaller with white surgical sponges compared to green sponges. In general, deviations were so severe for both types of sponges, that it appears to be advisable to refrain from visually estimating blood loss whenever possible and instead to use other techniques such as e.g. colorimetric estimation

    Do we visually estimate intra-operative blood loss better with white or green sponges and is the deviation from the real blood loss clinically acceptable? Results from a simulated scenario study.

    No full text
    BackgroundThe intraoperative blood loss is estimated daily in the operating room and is mainly done by visual techniques. Due to local standards, the surgical sponge colours can vary (e.g. white in US, green in Germany). The influence of sponge colour on accuracy of estimation has not been in the focus of research yet.Material and methodsA blood loss simulation study containing four "bleeding" scenarios each per sponge colour were created by using expired whole blood donation samples. The blood donations were applied to white and green surgical sponges after dilution with full electrolyte solution. Study participants had to estimate the absorbed blood loss in sponges in all scenarios. The difference to the reference blood loss was analysed. Multivariate linear regression analysis was performed to investigate other influence factors such as staff experience and sponge colour.ResultsA total of 53 anaesthesists participated in the study. Visual estimation correlated moderately with reference blood loss in white (Spearman's rho: 0.521; p = 3.748*10-16) and green sponges (Spearman's rho: 0.452; p = 4.683*10-12). The median visually estimated blood loss was higher in white sponges (250ml IRQ 150-412.5ml) than in green sponges (150ml IQR 100-300ml), compared to reference blood loss (103ml IQR 86-162.8). For both colour types of sponges, major under- and overestimation was observed. The multivariate statistics demonstrates that fabric colours have a significant influence on estimation (p = 3.04*10-10), as well as clinician's qualification level (p = 2.20*10-10, p = 1.54*10-08) and amount of RBL to be estimated (p ConclusionThe deviation of correct blood loss estimation was smaller with white surgical sponges compared to green sponges. In general, deviations were so severe for both types of sponges, that it appears to be advisable to refrain from visually estimating blood loss whenever possible and instead to use other techniques such as e.g. colorimetric estimation

    Changes in transfusion and fluid therapy practices in severely injured children: an analysis of 5118 children from the TraumaRegister DGU®

    No full text
    Purpose: Trauma is the leading cause of death in children. In adults, blood transfusion and fluid resuscitation protocols changed resulting in a decrease of morbidity and mortality over the past 2 decades. Here, transfusion and fluid resuscitation practices were analysed in severe injured children in Germany. Methods: Severely injured children (maximum Abbreviated Injury Scale (AIS) ≥ 3) admitted to a certified trauma-centre (TraumaZentrum DGU®) between 2002 and 2017 and registered at the TraumaRegister DGU® were included and assessed regarding blood transfusion rates and fluid therapy. Results: 5,118 children (aged 1–15 years) with a mean ISS 22 were analysed. Blood transfusion rates administered until ICU admission decreased from 18% (2002–2005) to 7% (2014–2017). Children who are transfused are increasingly seriously injured. ISS has increased for transfused children aged 1–15 years (2002–2005: mean 27.7–34.4 in 2014–2017). ISS in non-transfused children has decreased in children aged 1–15 years (2002–2005: mean 19.6 to mean 17.6 in 2014–2017). Mean prehospital fluid administration decreased from 980 to 549 ml without affecting hemodynamic instability. Conclusion: Blood transfusion rates and amount of fluid resuscitation decreased in severe injured children over a 16-year period in Germany. Restrictive blood transfusion and fluid management has become common practice in severe injured children. A prehospital restrictive fluid management strategy in severely injured children is not associated with a worsened hemodynamic state, abnormal coagulation or base excess but leads to higher hemoglobin levels
    corecore