5 research outputs found

    Perennial to ephemeral transformation of a Lesser Himalayan watershed

    No full text
    Under a changing climate, the Sub-Himalayan ecosystems are likely to experience marked transformations in hydrological, biogeochemical and biophysical processes. To explore this, we have been observing various hydrometeorological parameters in a completely rain-fed sub-Himalayan watershed (Salla Rauetella Watershed) since 1991. We noted a changing trend for some of the hydrometeorological parameters over the 22-yr period. While the annual air temperature has increased significantly, the annual rainfall also shows an increasing trend with a higher probability of increased rainfall intensity. The run-off data show a peculiar trend that the watershed has been transforming itself from a perennial to an ephemeral system, despite an increasing trend of rainfall magnitudes. This is primarily attributed to the increasing trends of rainfall intensities exceeding the infiltration capacities of the soil which trigger large but high-intensity run-off events with dry spells in other periods, which makes the river ephemeral. We infer a likely dynamic change in the run-off-generation mechanism which warrants the need for a more precise and rigorous observationcum- measurement strategy of ecohydrological processes in Himalayan ecosystems, supported with modelling and remote sensing approaches. This will help identify the optimal headwater treatment measures for augmenting groundwater to sustain the rainfed streams of the Himalaya under a changing climate. [ABSTRACT FROM AUTHOR] Copyright of Current Science (00113891) is the property of Indian Academy of Sciences and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract

    Analyses of Observed and Anticipated Changes in Extreme Climate Events in the Northwest Himalaya

    No full text
    In this study, past (1970-2005) as well as future long term (2011-2099) trends in various extreme events of temperature and precipitation have been investigated over selected hydro-meteorological stations in the Sutlej river basin. The ensembles of two Coupled Model Intercomparison Project (CMIP3) models: third generation Canadian Coupled Global Climate Model and Hadley Centre Coupled Model have been used for simulation of future daily time series of temperature (maximum and minimum) and precipitation under A2 emission scenario. Large scale atmospheric variables of both models and National Centre for Environmental Prediction/National Centre for Atmospheric Research reanalysis data sets have been downscaled using statistical downscaling technique at individual stations. A total number of 25 extreme indices of temperature (14) and precipitation (11) as specified by the Expert Team of the World Meteorological Organization and Climate Variability and Predictability are derived for the past and future periods. Trends in extreme indices are detected over time using the modified Mann-Kendall test method. The stations which have shown either decrease or no change in hot extreme events (i.e., maximum TMax, warm days, warm nights, maximum TMin, tropical nights, summer days and warm spell duration indicators) for 1970–2005 and increase in cold extreme events (cool days, cool nights, frost days and cold spell duration indicators) are predicted to increase and decrease respectively in the future. In addition, an increase in frequency and intensity of extreme precipitation events is also predicted

    Refining aquifer heterogeneity and understanding groundwater recharge sources in an intensively exploited agrarian dominated region of the Ganga Plain

    No full text
    Densely populated region of Ganga Plain is facing aquifer vulnerability through waterborne pollutants and groundwater stress due to indiscriminate abstraction, causing environmental and socio-economic instabilities. To address long-term groundwater resilience, it is crucial to understand aquifer heterogeneity and connectivity, groundwater recharge sources, effects of groundwater abstraction etc. In this context, present study aims to understand factors responsible for vertical and spatial variability of groundwater chemistry and to identify groundwater recharge sources in an intensively exploited agrarian region of the Ganga Plain.Interpretation of chemometric, statistical, and isotopic analysis categorises the alluvial aquifer into zone 1 (G1; ground surface to 100 m) and zone 2 (G2; >100 m-210 m). The group G1 samples are characterized by a wide variation in hydrochemical species, noted with pockets of F– and NO3– rich groundwater, and fresh to more evolved water types, while group G2 groundwater is characterized by a sharp increase in freshwater types and limited variation in their isotopic and hydrochemical species. The G1 groundwater chemistry is governed by soil mineralogy, local anthropogenic inputs (SO42-, Cl -, and NO3–), and manifested by multiple recharge sources (local precipitation, river, canal water, pond). The G2 group is dominated by geogenic processes and mainly recharged by the local precipitation. Geospatial signatures confirm more evolved water type for group G1 in northwestern region, while freshwater type covers the rest of the study area. Fluoride rich groundwater is attributed to sodic water under alkaline conditions and enriched δ18O values emphasizing role of evaporation in F- mobilization from micas and amphiboles abundant in the soil. The findings provide insight into potential groundwater vulnerability towards inorganic contaminants, and groundwater recharge sources. The outcome of this study will help to develop aquifer resilience towards indiscriminate groundwater extraction for agricultural practices and aim towards sustainable management strategies in a similar hydrogeological setting
    corecore