361 research outputs found

    Thylakoid localized bestrophin-like proteins are essential for the CO2 concentrating mechanism of Chlamydomonas reinhardtii

    Get PDF
    The green alga Chlamydomonas reinhardtii possesses a CO2 concentratingmechanism (CCM) which helps in successful acclimationto low CO2 conditions. Current models of the CCM postulate that aseries of ion transporters bring HCO3- from outside the cell to thethylakoid lumen, where the carbonic anhydrase CAH3 dehydratesaccumulated HCO3- to CO2, raising the CO2 concentration forRubisco. Previously, HCO3- transporters have been identified atboth the plasma membrane and the chloroplast envelope, butthe transporter thought to be on the thylakoid membrane hasnot been identified. Three paralogous genes (BST1, BST2, BST3)belonging to the bestrophin family have been found to be upregulatedin low CO2 conditions, and their expression is controlledby CIA5, a transcription factor that controls many CCM genes.YFP fusions demonstrate that all three proteins are located onthe thylakoid membrane, and interactome studies indicate thatthey might associate with chloroplast CCM components. A singlemutant defective in BST3 still grows nearly normally on low CO2,indicating that the three bestrophin-like proteins may have redundantfunctions. Therefore, an RNAi approach was adopted to reducethe expression of all three genes at once. RNAi mutants withreduced expression of BST1-3 were unable to grow at low CO2concentrations, exhibited a reduced affinity to inorganic carboncompared to the wild type cells, and showed reduced inorganiccarbon uptake. We propose that these bestrophin-like proteins areessential components of the CCM that deliver HCO3- accumulatedin the chloroplast stroma to CAH3 inside the thylakoid lumen

    Adding 6 months of androgen deprivation therapy to postoperative radiotherapy for prostate cancer: a comparison of short-course versus no androgen deprivation therapy in the RADICALS-HD randomised controlled trial

    Get PDF
    Background Previous evidence indicates that adjuvant, short-course androgen deprivation therapy (ADT) improves metastasis-free survival when given with primary radiotherapy for intermediate-risk and high-risk localised prostate cancer. However, the value of ADT with postoperative radiotherapy after radical prostatectomy is unclear. Methods RADICALS-HD was an international randomised controlled trial to test the efficacy of ADT used in combination with postoperative radiotherapy for prostate cancer. Key eligibility criteria were indication for radiotherapy after radical prostatectomy for prostate cancer, prostate-specific antigen less than 5 ng/mL, absence of metastatic disease, and written consent. Participants were randomly assigned (1:1) to radiotherapy alone (no ADT) or radiotherapy with 6 months of ADT (short-course ADT), using monthly subcutaneous gonadotropin-releasing hormone analogue injections, daily oral bicalutamide monotherapy 150 mg, or monthly subcutaneous degarelix. Randomisation was done centrally through minimisation with a random element, stratified by Gleason score, positive margins, radiotherapy timing, planned radiotherapy schedule, and planned type of ADT, in a computerised system. The allocated treatment was not masked. The primary outcome measure was metastasis-free survival, defined as distant metastasis arising from prostate cancer or death from any cause. Standard survival analysis methods were used, accounting for randomisation stratification factors. The trial had 80% power with two-sided α of 5% to detect an absolute increase in 10-year metastasis-free survival from 80% to 86% (hazard ratio [HR] 0·67). Analyses followed the intention-to-treat principle. The trial is registered with the ISRCTN registry, ISRCTN40814031, and ClinicalTrials.gov, NCT00541047. Findings Between Nov 22, 2007, and June 29, 2015, 1480 patients (median age 66 years [IQR 61–69]) were randomly assigned to receive no ADT (n=737) or short-course ADT (n=743) in addition to postoperative radiotherapy at 121 centres in Canada, Denmark, Ireland, and the UK. With a median follow-up of 9·0 years (IQR 7·1–10·1), metastasis-free survival events were reported for 268 participants (142 in the no ADT group and 126 in the short-course ADT group; HR 0·886 [95% CI 0·688–1·140], p=0·35). 10-year metastasis-free survival was 79·2% (95% CI 75·4–82·5) in the no ADT group and 80·4% (76·6–83·6) in the short-course ADT group. Toxicity of grade 3 or higher was reported for 121 (17%) of 737 participants in the no ADT group and 100 (14%) of 743 in the short-course ADT group (p=0·15), with no treatment-related deaths. Interpretation Metastatic disease is uncommon following postoperative bed radiotherapy after radical prostatectomy. Adding 6 months of ADT to this radiotherapy did not improve metastasis-free survival compared with no ADT. These findings do not support the use of short-course ADT with postoperative radiotherapy in this patient population

    Duration of androgen deprivation therapy with postoperative radiotherapy for prostate cancer: a comparison of long-course versus short-course androgen deprivation therapy in the RADICALS-HD randomised trial

    Get PDF
    Background Previous evidence supports androgen deprivation therapy (ADT) with primary radiotherapy as initial treatment for intermediate-risk and high-risk localised prostate cancer. However, the use and optimal duration of ADT with postoperative radiotherapy after radical prostatectomy remains uncertain. Methods RADICALS-HD was a randomised controlled trial of ADT duration within the RADICALS protocol. Here, we report on the comparison of short-course versus long-course ADT. Key eligibility criteria were indication for radiotherapy after previous radical prostatectomy for prostate cancer, prostate-specific antigen less than 5 ng/mL, absence of metastatic disease, and written consent. Participants were randomly assigned (1:1) to add 6 months of ADT (short-course ADT) or 24 months of ADT (long-course ADT) to radiotherapy, using subcutaneous gonadotrophin-releasing hormone analogue (monthly in the short-course ADT group and 3-monthly in the long-course ADT group), daily oral bicalutamide monotherapy 150 mg, or monthly subcutaneous degarelix. Randomisation was done centrally through minimisation with a random element, stratified by Gleason score, positive margins, radiotherapy timing, planned radiotherapy schedule, and planned type of ADT, in a computerised system. The allocated treatment was not masked. The primary outcome measure was metastasis-free survival, defined as metastasis arising from prostate cancer or death from any cause. The comparison had more than 80% power with two-sided α of 5% to detect an absolute increase in 10-year metastasis-free survival from 75% to 81% (hazard ratio [HR] 0·72). Standard time-to-event analyses were used. Analyses followed intention-to-treat principle. The trial is registered with the ISRCTN registry, ISRCTN40814031, and ClinicalTrials.gov , NCT00541047 . Findings Between Jan 30, 2008, and July 7, 2015, 1523 patients (median age 65 years, IQR 60–69) were randomly assigned to receive short-course ADT (n=761) or long-course ADT (n=762) in addition to postoperative radiotherapy at 138 centres in Canada, Denmark, Ireland, and the UK. With a median follow-up of 8·9 years (7·0–10·0), 313 metastasis-free survival events were reported overall (174 in the short-course ADT group and 139 in the long-course ADT group; HR 0·773 [95% CI 0·612–0·975]; p=0·029). 10-year metastasis-free survival was 71·9% (95% CI 67·6–75·7) in the short-course ADT group and 78·1% (74·2–81·5) in the long-course ADT group. Toxicity of grade 3 or higher was reported for 105 (14%) of 753 participants in the short-course ADT group and 142 (19%) of 757 participants in the long-course ADT group (p=0·025), with no treatment-related deaths. Interpretation Compared with adding 6 months of ADT, adding 24 months of ADT improved metastasis-free survival in people receiving postoperative radiotherapy. For individuals who can accept the additional duration of adverse effects, long-course ADT should be offered with postoperative radiotherapy. Funding Cancer Research UK, UK Research and Innovation (formerly Medical Research Council), and Canadian Cancer Society

    Bioinspired modeling and biogeography-based optimization of electrocoagulation parameters for enhanced heavy metal removal

    No full text
    Electrocoagulation is an effective wastewater treatment process for the removal of heavy metals. This study focuses on deriving optimal conditions for removing heavy metals, viz. Lead (Pb), Cobalt (Co), and Manganese (Mn) from simulated wastewater by investigating removal efficiency and energy consumption of electrocoagulation process. Five operational parameters namely pH (2–10), current density (0.076–0.189 A/cm2), inter-electrode distance (3–7 cm), solution temperature (30–70 °C) and charging time (5–25 cm) have been analyzed. To improve the treatment of heavy metals, a novel coupled approach, namely Artificial neural network - non-dominated sorting Biogeography based optimization (ANN-NSBBO), has been proposed. Using the experimental data, a feed-forward backpropagation ANN model is used with removal efficiency and energy consumption as the outputs. Optimal values of operational parameters for maximum removal efficiency and minimum energy consumption were obtained using multi-objective NSBBO over the trained ANN model. True pareto fronts for Cobalt, Lead and Manganese were obtained after 100 iterations of the optimization algorithm. The maximum removal efficiency of 98.66% was obtained for Cobalt at the electrical energy consumption of 0.204 kWh. Minimum energy consumption for electrocoagulation of Lead (5.34 x 10−6 kWh) gave 82.48% removal efficiency. The maximum removal efficiency of Manganese (101.238%) was achieved at 7.64 pH, 0.084 A/cm2 current density, 3.188 cm inter-electrode distance, 47.49 °C solution temperature, 19.758 min charging time, and 0.145 kWh energy consumption. The non-dominated optimum tradeoff between removal efficiency and energy consumption provides clarity on operating conditions for the electrocoagulation process. The proposed approach of enhancing heavy metal treatment could assist municipalities, industries, and the scientific communities in achieving the United Nation's sustainable development goal of heavy metal remediation.The authors are grateful to Birla Institute of Technology and Science, Pilani, India, for providing the necessary facilities to carry out this research work. The authors are also thankful to Prof. Chigozie Francolins Uzoh, Department of Chemical Engineering, Nnamdi Azikiwe University, Awka, Anambra, Nigeria, for providing us required data. The references cited in the text have provided an in-depth understanding of this research work and are greatly acknowledged. We also express our gratitude to anonymous reviewers and editors for their comments and time.Scopu
    corecore