111 research outputs found
The Graphical Lasso: New Insights and Alternatives
The graphical lasso \citep{FHT2007a} is an algorithm for learning the
structure in an undirected Gaussian graphical model, using
regularization to control the number of zeros in the precision matrix
{\B\Theta}={\B\Sigma}^{-1} \citep{BGA2008,yuan_lin_07}. The {\texttt R}
package \GL\ \citep{FHT2007a} is popular, fast, and allows one to efficiently
build a path of models for different values of the tuning parameter.
Convergence of \GL\ can be tricky; the converged precision matrix might not be
the inverse of the estimated covariance, and occasionally it fails to converge
with warm starts. In this paper we explain this behavior, and propose new
algorithms that appear to outperform \GL.
By studying the "normal equations" we see that, \GL\ is solving the {\em
dual} of the graphical lasso penalized likelihood, by block coordinate ascent;
a result which can also be found in \cite{BGA2008}.
In this dual, the target of estimation is \B\Sigma, the covariance matrix,
rather than the precision matrix \B\Theta. We propose similar primal
algorithms \PGL\ and \DPGL, that also operate by block-coordinate descent,
where \B\Theta is the optimization target. We study all of these algorithms,
and in particular different approaches to solving their coordinate
sub-problems. We conclude that \DPGL\ is superior from several points of view.Comment: This is a revised version of our previous manuscript with the same
name ArXiv id: http://arxiv.org/abs/1111.547
Least quantile regression via modern optimization
We address the Least Quantile of Squares (LQS) (and in particular the Least
Median of Squares) regression problem using modern optimization methods. We
propose a Mixed Integer Optimization (MIO) formulation of the LQS problem which
allows us to find a provably global optimal solution for the LQS problem. Our
MIO framework has the appealing characteristic that if we terminate the
algorithm early, we obtain a solution with a guarantee on its sub-optimality.
We also propose continuous optimization methods based on first-order
subdifferential methods, sequential linear optimization and hybrid combinations
of them to obtain near optimal solutions to the LQS problem. The MIO algorithm
is found to benefit significantly from high quality solutions delivered by our
continuous optimization based methods. We further show that the MIO approach
leads to (a) an optimal solution for any dataset, where the data-points
's are not necessarily in general position, (b) a simple
proof of the breakdown point of the LQS objective value that holds for any
dataset and (c) an extension to situations where there are polyhedral
constraints on the regression coefficient vector. We report computational
results with both synthetic and real-world datasets showing that the MIO
algorithm with warm starts from the continuous optimization methods solve small
() and medium () size problems to provable optimality in under
two hours, and outperform all publicly available methods for large-scale
(10,000) LQS problems.Comment: Published in at http://dx.doi.org/10.1214/14-AOS1223 the Annals of
Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical
Statistics (http://www.imstat.org
The Discrete Dantzig Selector: Estimating Sparse Linear Models via Mixed Integer Linear Optimization
We propose a novel high-dimensional linear regression estimator: the Discrete
Dantzig Selector, which minimizes the number of nonzero regression coefficients
subject to a budget on the maximal absolute correlation between the features
and residuals. Motivated by the significant advances in integer optimization
over the past 10-15 years, we present a Mixed Integer Linear Optimization
(MILO) approach to obtain certifiably optimal global solutions to this
nonconvex optimization problem. The current state of algorithmics in integer
optimization makes our proposal substantially more computationally attractive
than the least squares subset selection framework based on integer quadratic
optimization, recently proposed in [8] and the continuous nonconvex quadratic
optimization framework of [33]. We propose new discrete first-order methods,
which when paired with state-of-the-art MILO solvers, lead to good solutions
for the Discrete Dantzig Selector problem for a given computational budget. We
illustrate that our integrated approach provides globally optimal solutions in
significantly shorter computation times, when compared to off-the-shelf MILO
solvers. We demonstrate both theoretically and empirically that in a wide range
of regimes the statistical properties of the Discrete Dantzig Selector are
superior to those of popular -based approaches. We illustrate that
our approach can handle problem instances with p = 10,000 features with
certifiable optimality making it a highly scalable combinatorial variable
selection approach in sparse linear modeling
Projected likelihood contrasts for testing homogeneity in finite mixture models with nuisance parameters
This paper develops a test for homogeneity in finite mixture models where the
mixing proportions are known a priori (taken to be 0.5) and a common nuisance
parameter is present. Statistical tests based on the notion of Projected
Likelihood Contrasts (PLC) are considered. The PLC is a slight modification of
the usual likelihood ratio statistic or the Wilk's and is similar in
spirit to the Rao's score test. Theoretical investigations have been carried
out to understand the large sample statistical properties of these tests.
Simulation studies have been carried out to understand the behavior of the null
distribution of the PLC statistic in the case of Gaussian mixtures with unknown
means (common variance as nuisance parameter) and unknown variances (common
mean as nuisance parameter). The results are in conformity with the theoretical
results obtained. Power functions of these tests have been evaluated based on
simulations from Gaussian mixtures.Comment: Published in at http://dx.doi.org/10.1214/193940307000000194 the IMS
Collections (http://www.imstat.org/publications/imscollections.htm) by the
Institute of Mathematical Statistics (http://www.imstat.org
Best Subset Selection via a Modern Optimization Lens
In the last twenty-five years (1990-2014), algorithmic advances in integer
optimization combined with hardware improvements have resulted in an
astonishing 200 billion factor speedup in solving Mixed Integer Optimization
(MIO) problems. We present a MIO approach for solving the classical best subset
selection problem of choosing out of features in linear regression
given observations. We develop a discrete extension of modern first order
continuous optimization methods to find high quality feasible solutions that we
use as warm starts to a MIO solver that finds provably optimal solutions. The
resulting algorithm (a) provides a solution with a guarantee on its
suboptimality even if we terminate the algorithm early, (b) can accommodate
side constraints on the coefficients of the linear regression and (c) extends
to finding best subset solutions for the least absolute deviation loss
function. Using a wide variety of synthetic and real datasets, we demonstrate
that our approach solves problems with in the 1000s and in the 100s in
minutes to provable optimality, and finds near optimal solutions for in the
100s and in the 1000s in minutes. We also establish via numerical
experiments that the MIO approach performs better than {\texttt {Lasso}} and
other popularly used sparse learning procedures, in terms of achieving sparse
solutions with good predictive power.Comment: This is a revised version (May, 2015) of the first submission in June
201
- β¦