13,744 research outputs found

    Flat bands with local Berry curvature in multilayer graphene

    Full text link
    We demonstrate that flat bands with local Berry curvature arise naturally in chiral (ABC) multilayer graphene placed on a boron nitride (BN) substrate. The degree of flatness can be tuned by varying the number of graphene layers N. For N = 7 the bands become nearly flat, with a small bandwidth of 3.6 meV. The two nearly flat bands coming from the K and K' valleys cross along lines in the reduced zone. Weak intervalley tunneling turns the bandcrossing into an avoided crossing, producing two nearly flat bands with global Chern number zero, but with local Berry curvature. The flatness of the bands suggests that many body effects will dominate the physics, while the local Berry curvature of the bands endows the system with a nontrivial quantum geometry. The quantum geometry effects manifest themselves through the quantum distance (Fubini-Study) metric, rather than the more conventional Chern number. Multilayer graphene on BN thus provides a platform for investigating the effect of interactions in a system with a non-trivial quantum distance metric, without the complication of non-zero Chern numbers. We note in passing that flat bands with non-zero Chern number can also be realized by making use of magnetic adatoms, and explicitly breaking time reversal symmetry

    Rotating black hole in Rastall theory

    Full text link
    Rotating black hole solutions in theories of modified gravity are important as they offer an arena to test these theories through astrophysical observation. The non-rotating black hole can be hardly tested since the black hole spin is very important in any astrophysical process. We present rotating counterpart of a recently obtained spherically symmetric exact black hole solution surrounded by perfect fluid in the context of Rastall theory, viz, rotating Rastall black hole that generalize the Kerr-Newman black hole solution. In turn, we analyze the specific cases of the Kerr-Newman black holes surrounded by matter like dust and quintessence fields. Interestingly, for a set of parameters and a chosen surrounding field, there exists a critical rotation parameter (a=aEa=a_{E}), which corresponds to an extremal black hole with degenerate horizons, while for a<aEa<a_{E}, it describes a non-extremal black hole with Cauchy and event horizons, and no black hole for a>aEa>a_{E} with value aEa_E is also influenced by these parameters. We also discuss the thermodynamical quantities associated with rotating Rastall black hole, and analyze the particle motion with the behavior of effective potential.Comment: 26 pages, 8 figures. Matched with the published versio
    corecore