21 research outputs found
Conditional inactivation of Pten with EGFR overexpression in Schwann cells models sporadic MPNST
Author name used in this publication: Vincent W. Keng2012-2013 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
Co-targeting the MAPK and PI3K/AKT/mTOR pathways in two genetically engineered mouse models of schwann cell tumors reduces tumor grade and multiplicity
202012 bcrcVersion of RecordPublishe
Somatic mutations of SUZ12 in malignant peripheral nerve sheath tumors
Neurofibromatosis 1 is a hereditary syndrome characterized by the development of numerous benign neurofibromas, a small subset of which progress to malignant peripheral nerve sheath tumors (MPNSTs). To better understand the genetic basis for MPNSTs, we performed genome-wide or targeted sequencing on 50 cases. Sixteen MPNSTs but none of the neurofibromas tested were found to have somatic mutations in SUZ12, implicating it as having a central role in malignant transformation
The cAMP phosphodiesterase-4D7 (PDE4D7) is downregulated in androgen-independent prostate cancer cells and mediates proliferation by compartmentalising cAMP at the plasma membrane of VCaP prostate cancer cells
Background: Isoforms of the PDE4 family of cAMP-specific phosphodiesterases (PDEs) are expressed in a cell type-dependent manner and contribute to underpinning the paradigm of intracellular cAMP signal compartmentalisation. Here we identify the differential regulation of the PDE4D7 isoform during prostate cancer progression and uncover a role in controlling prostate cancer cell proliferation.
Methods: PDE4 transcripts from 19 prostate cancer cell lines and xenografts were quantified by qPCR. PDE4D7 expression was further investigated because of its significant downregulation between androgen-sensitive (AS) and androgen-insensitive (AI) samples. Western blot analysis, PDE activity assay, immunofluorescent staining and cAMP responsive FRET assays were used to investigate the sub-plasma membrane localisation of a population of PDE4D7 in VCaP (AS) and PC3 (AI) cell lines. Disruption of this localisation pattern using dominant-negative protein expression and siRNA knockdown showed that PDE4D7 acts in opposition to proliferative signalling as assessed by electrical impedance-based proliferation assays.
Results: Here we identify the differential regulation of the PDE4D7 isoform during prostate cancer progression. PDE4D7 is highly expressed in AS cells and starkly downregulated in AI samples. The significance of this downregulation is underscored by our finding that PDE4D7 contributes a major fraction of cAMP degrading PDE activity tethered at the plasma membrane and that displacement of PDE4D7 from this compartment leads to an increase in the proliferation of prostate cancer cells. PDE4D7 mRNA expression is not, however, directly regulated by the androgen receptor signalling axis despite an overlapping genomic structure with the androgen responsive gene PART1. PDE4D7, which locates to the plasma membrane, acts to supress aberrant non-steroidal growth signals within the prostate or AS metastasis.
Conclusions: PDE4D7 expression is significantly downregulated between AS and AI cell phenotypes. This change in expression potentially provides a novel androgen-independent biomarker and manipulation of its activity or its expression may provide therapeutic possibilities and insights into contributory aspects of the complex molecular pathology of prostate cancer